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Motivation and Goals

Good model selection is crucial for modern sound financial practice.

Focus: Dupire [Dup94] local volatility models
Goal:

Present a unified framework for the calibration of local volatility models

Use recent tools of convex regularization of ill-posed Inverse Problems.

Present convergence results that include convergence rates w.r.t. noise
level in fairly general contexts

Go beyond the classical quadratic regularization.

Application
Volatility surface calibration is crucial in many applications. E.G.: risk
management, hedging, and the evaluation of exotic derivatives.
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Main Features

Address in a general and rigorous way the key issue of convergence and
sensitivity of the regularized solution when the noise level of the observed
prices goes to zero.

Our approach relates to different techniques in volatility surface
estimation. e.g.: the Statistical concept of exponential families and
entropy-based estimation.

Our framework connects with the Financial concept of Convex Risk
Measures.

Convex-Regularization Framework for Local-Volatility Calibration c©J.P.Zubelli (IMPA) June 21, 2010 4 / 42



Problem Statement

Starting Point: Dupire forward equation [Dup94]

−∂T U +
1
2

σ
2(T ,K )K 2

∂
2
K U− (r −q)K ∂K U−qU = 0 , T > 0 , (1)

K = S0ey , τ = T − t , b = q− r , u(τ,y) = eqτU t,S(T ,K ) (2)

and

a(τ,y) =
1
2

σ
2(T − τ;S0ey ) , (3)

Set q = r = 0 for simplicity to get:

uτ = a(τ,y)(∂
2
y u−∂y u) (4)

and initial condition
u(0,y) = S0(1−ey )+ (5)
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Problem Statement

The Vol Calibration Problem
Given an observed set

{u = u(t,S,T ,K ;σ)}(T ,K )∈S

find σ = σ(t,S) that best fits such market data

Noisy data: u = uδ

Admissible convex class of calibration parameters:

D(F) := {a ∈ a0 + U : a≤ a≤ a}. (6)

where, for 0≤ ε fixed, U := H1+ε(Ω) and a > a > 0.

Parameter-to-solution operator

F : D(F)⊂ U→ V
F(a) = u(a) (7)
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Approach

Convex Tikhonov Regularization
For given convex f minimize the Tikhonov functional

F
β,uδ(a) := ||F(a)−uδ||2L2(Ω) + βf (a) (8)

over D(F), where, β > 0 is the regularization parameter.

Remark that f incorporates the a priori info on a.

||ū−uδ||L2(Ω) ≤ δ , (9)

where ū is the data associated to the actual value â ∈D(F).

Assumption (very general!)

Let ε≥ 0 be fixed. f : D(f )⊂ U −→ [0,∞] is a convex, proper and sequentially
weakly lower semi-continuous functional with domain D(f ) containing D(F).
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Technical Assumptions
Assumption 1 on f and F : D(F)⊂ U→ V

Assumption (1)

1 U and V given topologies τU and τV weaker than the norm topologies.

2 The norm ‖·‖V is sequentially lower semi-continuous w.r.t. τV .

3 The functional f : D(f )⊆ U→ [0,∞] is convex and sequentially lower
semi-continuous w.r.t. τU and D := D(F)∩D(f ) 6= /0.

4 Let Fβ,ū the Tikhonov functional defined in (8). Then,

Mβ(M) := levelM(Fβ,ū) = {a : Fβ,ū(a)≤M}

is sequentially pre-compact and closed w.r.t. τU .
5 The restriction of F to Mβ(M) are sequentially continuous w.r.t. the

topologies τU and τV .
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Main Theoretical Result
F(a) = u(a) (7) F

β,uδ(a) := ||F(a)−uδ||2L2(Ω) +βf (a) (8)

Theorem (Existence, Stability, Convergence)

Sup. F , f , D , U, V satisfy Assumption 1, β > 0 and uδ ∈ V. Then,

∃ minimizer of F
β,uδ .

If (uk )→ u in V w.r.t. norm topology, then (ak ) s.t.

ak ∈ argmin
{

Fβ,uk (a) : a ∈D
}

has a subsequence which converges w.r.t. τU .

The limit of every τU -convergent subsequence (ak ′) of (ak ) is a minimizer
ã of Fβ,u, and

(
f (ak ′)

)
converges to f (ã).

If ∃ a solution of (7) in D , then ∃ an f -minimizing solution of (7).
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Main Theoretical Result (cont)
F(a) = u(a) (7) F

β,uδ(a) := ||F(a)−uδ||2L2(Ω) +βf (a) (8)

Theorem (cont.)

Take β = β(δ) > 0 and assume

(7) has a solution in D
β(δ) satisfies

β(δ)→ 0 and
δ2

β(δ)
→ 0 , as δ→ 0 . (10)

The seq. (δk ) converges to 0, and that uk := uδk satisfies ‖ū−uk‖ ≤ δk .

Then,
1 Every seq. (ak ) ∈ argminFβk ,uk , has τU -convergent subseq. (ak ′).
2 The limit a† := limτU ak ′ is an f -minimizing solution of (7), and

f (ak )→ f (a†).
3 If the f -minimizing solution a† is unique, then ak → a† w.r.t. τU .
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Assumption 2

Bregman distance

Let f be a convex function. For a ∈D(f ), ∂f (a)⊂ U∗ denotes the
subdifferential of the functional f at a.
We denote by D(∂f ) = {ã : ∂f (ã) 6= /0} the domain of the subdifferential.
The Bregman distance w.r.t ζ ∈ ∂f (a1) is defined on D(f )×D(∂f ) by

Dζ(a2,a1) = f (a2)− f (a1)−〈ζ,a2−a1〉 .

Assumption (2)

Besides Assumption 1, we assume that
1 ∃ an f -minimizing sol. a† of (7), a† ∈DB(f ).
2 ∃β1 ∈ [0,1), β2 ≥ 0, and ζ† ∈ ∂f (a†) s.t.

〈ζ†,a†−a〉 ≤ β1Dζ†(a,a†)+β2
∥∥F(a)−F(a†)

∥∥
V

for a∈Mβmax(ρ) , (11)

where ρ > βmaxf (a†) > 0.
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We denote by D(∂f ) = {ã : ∂f (ã) 6= /0} the domain of the subdifferential.
The Bregman distance w.r.t ζ ∈ ∂f (a1) is defined on D(f )×D(∂f ) by

Dζ(a2,a1) = f (a2)− f (a1)−〈ζ,a2−a1〉 .

Assumption (2)

Besides Assumption 1, we assume that
1 ∃ an f -minimizing sol. a† of (7), a† ∈DB(f ).
2 ∃β1 ∈ [0,1), β2 ≥ 0, and ζ† ∈ ∂f (a†) s.t.

〈ζ†,a†−a〉 ≤ β1Dζ†(a,a†)+β2
∥∥F(a)−F(a†)

∥∥
V

for a∈Mβmax(ρ) , (11)

where ρ > βmaxf (a†) > 0.
Convex-Regularization Framework for Local-Volatility Calibration c©J.P.Zubelli (IMPA) June 21, 2010 12 / 42



Convergence rates [SGG+08]

Theorem (Convergence rates [SGG+08])

Let F , f , D , U, and V satisfy Assumption 2. Moreover, let β : (0,∞)→ (0,∞)
satisfy β(δ)∼ δ. Then

Dζ†(aδ

β
,a†) = O(δ) ,

∥∥∥F(aδ

β
)−uδ

∥∥∥
V

= O(δ) ,

and there exists c > 0, such that f (aδ

β
)≤ f (a†) + δ/c for every δ with

β(δ)≤ βmax.
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Putting it all together

Although Assumption 1 may seem too restrictive, the next result reveals that it
can be obtained from rather classical ones:

Proposition

Let F , f , D , U, and V satisfy Assumption 1. Assume that ∃ an f -minimizing
solution a† of (7), and that F is Gâteaux differentiable at a†.
Moreover, assume that ∃γ≥ 0 and ω† ∈ V ∗ with γ

∥∥ω†
∥∥ < 1, s.t.

ζ
† := F ′(a†)∗ω† ∈ ∂f (a†) (12)

and ∃βmax > 0 satisfying ρ > βmaxf (a†) such that∥∥F(a)−F(a†)−F ′(a†)(a−a†)
∥∥ ≤ γDζ†(a,a†) , for a ∈Mβmax(ρ) . (13)

Then, Assumption 2 holds.
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Putting it all together
Cont.

NOTE: We have proved
The above hypothesis hold for the problem under consideration.
We have proved a tangential cone condition, which implies that the
Landwever iteration converges in a suitable neighborhood.

Landweber Iteration [EHN96]:

aδ
k+1 = aδ

k + cF ′(aδ
k )∗(uδ−F(aδ

k )) . (14)

Discrepancy Principle:∥∥∥uδ−F(aδ

k∗(δ,yδ)
)
∥∥∥ ≤ rδ <

∥∥∥uδ−F(aδ
k )

∥∥∥ , (15)

where

r > 2
1 + η

1−2η
, (16)

is a relaxation term.
If the iteration is stopped at index k∗(δ,yδ) such that for the first time, the
residual becomes small compared to the quantity rδ.
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Connection with Statistics and Exponential Families

Regular Exponential Families:
family of probability distribution functions pψ,θ : R→ R+ defined by

pψ,θ(s) := exp(s ·θ−ψ(θ))p0(s)

where ψ : R→ R∪{+∞} is convex and p0 : R→ R+ is continuous.

Example:
Gaussians parametrized by the mean.

The Darmois-Koopman-Pitman Thm: Under certain regularity conditions on
the probability density, a necessary and sufficient condition for the existence of
a sufficient statistic of fixed dimension is that the probability density belongs to
the exponential family [And70].
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Connection with Statistics and Exponential Families(cont.)

Recall the Fenchel Conjugate

Given a function f : X → R∪{+∞}, the Fenchel dual f ∗X ∗→ R∪{+∞} is
defined by

f ∗(x∗) := sup{〈x∗,x〉− f (x) | x ∈ X}

Theorem (Banerjee et al. [BMDG05])

Let ψ∗ denote the Fenchel transform of ψ, which we assume to be
differentiable. Then, the Bregman distance w.r.t. ψ∗ is given by

Dψ∗(â, ã) = ψ
∗(â)−ψ

∗(ã)−ψ
∗′(ã)(â− ã) .

If we assume that a(θ) ∈ int(dom(ψ∗)), then

pψ,θ(a) = exp
(
−Dψ∗ (a,a(θ))

)
exp

(
ψ
∗(a)

)
p0(a) . (17)
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Connection with Statistics and Exponential Families(cont.)

Example (Exponential Families and their Fenchel conjugates)

For a Gaussian distribution ψ(θ) = ϖ2

2 θ2, then ψ∗(a) = a2

2ϖ2 . For Poisson
distribution ψ(θ) = exp(θ) we have ψ∗(a) = a log(a)−a.

Example
According to Example 1, if we use the exponential family associated to Poisson
distributions, we obtain Kullback-Leibler regularization, consisting in
minimization of

a 7−→ F
β,uδ(a) :=

∥∥∥F(a)−uδ

∥∥∥2

L2(Ω)
+ βKL(â,a) , (18)

where
KL(â,a) =

Z
Ω

a log(â/a)− (â−a)dx .

We note that the Kullback-Leibler distance is the Bregman distance associated
to the Boltzmann-Shannon entropy

G(a) :=
Z

Ω
a log(a)dx . (19)
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Connection with Statistics and Exponential Families(cont.)

Lemma

Let Ω be a bounded subset of R2 with Lipschitz boundary. Moreover, assume
that F is continuous w.r.t. the weak topologies on L1(Ω) and L2(Ω), respec.

1 Let a,b ∈D(G). Then

‖a−b‖2
L1(Ω) ≤

(
2
3
‖a‖L1(Ω) +

4
3
‖b‖L1(Ω)

)
KL(a,b) . (20)

(Convention: 0 · (+∞) = 0)

2 Let 0 6= â ∈DB(G), then the sets

M
β,uδ(M) := {a ∈DB(G) : F

β,uδ(a)≤M}

are τŨ sequentially compact.
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Connection with Statistics and Exponential Families(cont.)

An important consequence of (20) and Theorem 2 is that∥∥∥aδ

β
−a†

∥∥∥
L1(Ω)

= O(
√

δ) . (21)

Now, let δk be a sequence converging to zero and ak = aδk
βk

the respective

minimizers of the Tikhonov functional (8). Take bk = a† for all k ∈ N. Then,
from Lemma 1 ∥∥ak −a†∥∥

L1(Ω)
→ 0 , as δk → 0 .
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Connection w/ Convex Risk Measures

Convex measure of risk
Consists of a map ρ : X −→ R satisfying the following properties:

Convexity.

Non-increasing monotonicity, i.e., ν2 ≤ ν1 a.e. implies ρ(ν2)≥ ρ(ν1).

Translation invariance, i.e., m ∈ R deterministic implies

ρ(ν + m) = ρ(ν)−m . (22)

We assume that the domain Ω = [0,T ]× I

Theorem

The source condition (12)

ζ
† := F ′(a†)∗ω† ∈ ∂f (a†) (12)

can be interpreted as an a priori assumption on the risk associated to the
correspondent position, given the volatility level.
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Numerical Examples
Description of the Examples

Using a Landweber iteration technique we implemented the calibration.

Produced for different test variances a the option prices and added
different levels of multiplicative noise.

The examples consisted of perturbing a = 1 during a period of
T = 0, · · · ,0.2 and log-moneyness y varying between −5 and 5.

Initial guess: Constant volatility.
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Numerical Examples - Exact Solution
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Numerical Examples 1 - noiseless - 4000 steps
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Numerical Examples 1 - error - 100 steps
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Numerical Examples 1 - error - 300 steps
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Numerical Examples 1 - error - 500 steps
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Numerical Examples 1 - error - 1000 steps
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Numerical Examples 1 - error - 2000 steps
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Numerical Examples 1 - error - 4000 steps
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Numerical Examples 2 - 5% noise level - 100 steps
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Numerical Examples 2 - 5% noise level - 200 steps
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Numerical Examples 2 - 5% noise level - 300 steps
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Numerical Examples 2 - 5% noise level - 400 steps
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Numerical Examples 2 - 5% noise level - Stopping criteria
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Numerical Examples 2 - 5% noise level - 2000 iterations
Too many!!!

Convex-Regularization Framework for Local-Volatility Calibration c©J.P.Zubelli (IMPA) June 21, 2010 40 / 42



Conclusions

The problem of volatility surface calibration is a classical and fundamental
one in Quantitative Finance

Unifying framework for the regularization that makes use of tools from
Inverse Problem theory and Convex Analysis.

Establishing convergence and convergence-rate results.

Obtain convergence of the regularized solution with respect to the noise
level in L1(Ω)

The connection with exponential families opens the door to recent works
on entropy-based estimation methods.

The connection with convex risk measures required the use of techniques
from Malliavin calculus.

Implemented a Landweber type calibration algorithm.
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