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Motivation and Goals

Good model selection is crucial for modern sound financial practice.

Focus: Dupire [Dup94] local volatility models

Goal:
@ Present a unified framework for the calibration of local volatility models
@ Use recent tools of convex regularization of ill-posed Inverse Problems.

@ Present convergence results that include convergence rates w.r.t. noise
level in fairly general contexts

@ Go beyond the classical quadratic regularization.

Application

Volatility surface calibration is crucial in many applications. E.G.: risk
management, hedging, and the evaluation of exotic derivatives.
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@ Address in a general and rigorous way the key issue of convergence and
sensitivity of the regularized solution when the noise level of the observed
prices goes to zero.

@ Our approach relates to different techniques in volatility surface

estimation. e.g.: the Statistical concept of exponential families and
entropy-based estimation.

@ Our framework connects with the Financial concept of Convex Risk
Measures.
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Problem Statement

Starting Point: Dupire forward equation [Dup94]

]
—BTU-I—562(T,K)Kzaf(U—(r—q)KaKU—qU: 0, T>0, (1)

K=8¢&,1=T—t, b=qg—r, u(t,y)=e"U"S(T,K) )

and ]
a(t,y) = 50°(T — 7 Se’), (3)

Set g = r = 0 for simplicity to get:

e = a(t.y)(@u—,u) @

and initial condition
u(0,y) = So(1—¢€")* (5)
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Problem Statement

The Vol Calibration Problem
Given an observed set

{u=u(t,S,T,K; G)}(T,K)ES

find 6 = o(t, S) that best fits such market data

Noisy data: u = u®

Admissible convex class of calibration parameters:
D(F):={aca+U:a<a<a}. (6)
where, for 0 < ¢ fixed, U := H'"¢(Q) and 2> a > 0.

Parameter-to-solution operator
F:DF)cU—V
F(a) = u(a) (7)
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Approach

Convex Tikhonov Regularization
For given convex f minimize the Tikhonov functional

Tpu(a) = [|F(a) — ¥ F2 ) + Bf(a) t)

over D(F), where, B > 0 is the regularization parameter.

Remark that f incorporates the a prioriinfo on a.
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Approach

Convex Tikhonov Regularization
For given convex f minimize the Tikhonov functional

Tpu(a) = [|F(a) — ¥ F2 ) + Bf(a) t)

over D(F), where, B > 0 is the regularization parameter.

Remark that f incorporates the a prioriinfo on a.

15— ¥l iz() <3, ©)
where U is the data associated to the actual value & € D(F).
Assumption (very general!)

Let € > 0 be fixed. f: D(f) C U — [0,0] is a convex, proper and sequentially
weakly lower semi-continuous functional with domain D(f) containing D(F).
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Technical Assumptions

Assumption 1 on fand F : D(F)Cc U— V

Assumption (1)

@ U and V given topologies Tt and ty weaker than the norm topologies.
@ The norm ||-||,, is sequentially lower semi-continuous w.r.t. Ty.

@ The functional f : D(f) C U — [0, 0] is convex and sequentially lower
semi-continuous w.r.t. Ty and D := D(F) N D(f) # 0.

Q Let s,z the Tikhonov functional defined in (8). Then,

My(M) = levely(Fpz) = {a: Fpu(a) < M}

is sequentially pre-compact and closed w.r.t. Ty.

© The restriction of F to Mg(M) are sequentially continuous w.r.t. the
topologies Ty and Ty .
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Main Theoretical Result

Fla)=u(a) (7) Fp.5(a) = ||F(a) = &P|[2 ) +BF(a)  (8)

Theorem (Existence, Stability, Convergence)

Sup. F, f, D, U, V satisfy Assumption 1, > 0 and u® € V. Then,
© J minimizer of Fg ;5.

@ If(uk) — uin V w.r.t. norm topology, then (ax) s.t.
ay € argmin{ 73, (a) : a€ D}

has a subsequence which converges w.r.t. Ty.

@ The limit of every Tty -convergent subsequence (ay) of (ax) is a minimizer
aof 7, and (f(ax)) converges to ().

@ Ifd a solution of (7) in D, then 3 an f-minimizing solution of (7).
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Main Theoretical Result (cont)

Fla)=u(a) (7) Fp.5(a) = ||F(a) = &P|[2 ) +BF(a)  (8)

Theorem (cont.)
Take B = B(8) > 0 and assume
@ (7) has a solution in D

@ [3(d) satisfies
2

B(S)—>0and%—>0,as§—>0. (10)

@ The seq. (8x) converges to 0, and that ux := u® satisfies ||t — uk|| < 8.
Then,
@ Every seq. (ax) € argmin7g, ,,, has Ty-convergent subseq. (ax).

@ Thelimita := limz, @k is an f-minimizing solution of (7), and
f(ak) — f(a").

© |If the f-minimizing solution a' is unique, then ax — a’ w.r.t. Ty.
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Assumption 2

Bregman distance

Let f be a convex function. For a € D(f), df(a) C U* denotes the
subdifferential of the functional f at a.

We denote by D(df) = {&: 9f(a) # 0} the domain of the subdifferential.
The Bregman distance w.r.t { € df(ay) is defined on D(f) x D(df) by

Dc(ag,a1) = f(ag)—f(a1)—<c,ag—a1> .
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Let f be a convex function. For a € D(f), df(a) C U* denotes the
subdifferential of the functional f at a.

We denote by D(df) = {&: 9f(a) # 0} the domain of the subdifferential.
The Bregman distance w.r.t { € df(ay) is defined on D(f) x D(df) by

Dc(ag,a1) = f(ag)—f(a1)—<c,ag—a1> .

Assumption (2)

Besides Assumption 1, we assume that
@ 3 an f-minimizing sol. a of (7), a" € Dg(f).
@ 3By €[0,1),B2>0,and (" € 9f(a’) s.t.

(€7, a" — a) <Py D;+(a, a')+Bz||F(a)— F(a")|| , forae My (p), (11)
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Convergence rates [SGGT08]

Theorem (Convergence rates [SGG08])

LetF, f, D, U, and V satisfy Assumption 2. Moreover, let 3 : (0,00) — (0, o)
satisfy B(8) ~ 3. Then

D (ad,a") = 0(3). HF(ag) - u5H ,=0(3).

and there exists ¢ > 0, such that f(ag) < f(a") +38/c for every & with

B(3) < Brmax-
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Putting it all together

Although Assumption 1 may seem too restrictive, the next result reveals that it
can be obtained from rather classical ones:

Proposition

LetF, f, D, U, and V satisfy Assumption 1. Assume that 3 an f-minimizing
solution a of (7), and that F is Gateaux differentiable at a' .
Moreover, assume that 3y > 0 and " € V* withy||o'|| <1, s.t

("= F(a') o caf(a’) (12)
and IBmax > 0 satisfying p > Pmaxf(a’) such that
|F(a)—F(a")— F'(a")(a—a")|| <yDg(aa"), forac My (p). (13)

Then, Assumption 2 holds.
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Putting it all together

Cont.

NOTE: We have proved
@ The above hypothesis hold for the problem under consideration.
@ We have proved a tangential cone condition, which implies that the
Landwever iteration converges in a suitable neighborhood.
Landweber Iteration [EHN96]:

a1 = ag+cF () (1 — F(&)). (14)
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Cont.

NOTE: We have proved
@ The above hypothesis hold for the problem under consideration.
@ We have proved a tangential cone condition, which implies that the
Landwever iteration converges in a suitable neighborhood.
Landweber Iteration [EHN96]:

a1 = ag+cF () (1 — F(&)). (14)

Discrepancy Principle:

HL’S_F(aZ(&yS))H <ré< HUS—F(a?)H, (15)
where
r> 2:;’;‘1 , (16)

is a relaxation term.
If the iteration is stopped at index k.. (9, y5) such that for the first time, the
residual becomes small compared to the quantity rd.
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Connection with Statistics and Exponential Families

Regular Exponential Families:
family of probability distribution functions py ¢ : R — R defined by

Py.6(s) = exp(s-6—y(8))po(s)

where Y : R — RU {+eo} is convex and pp : R — R is continuous.

Example:

Gaussians parametrized by the mean.

V.

The Darmois-Koopman-Pitman Thm: Under certain regularity conditions on
the probability density, a necessary and sufficient condition for the existence of
a sufficient statistic of fixed dimension is that the probability density belongs to

the exponential family [And70].
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Connection with Statistics and Exponential Families(cont.)

Recall the Fenchel Conjugate

Given a function f : X — RU{+oo}, the Fenchel dual f*X* — RU {+eo} is
defined by

f(x*) ;== sup{(x*,x) — f(x) | x € X}

Theorem (Banerjee et al. [BMDGO05])

Let y* denote the Fenchel transform of y, which we assume to be
differentiable. Then, the Bregman distance w.r.t. y* is given by

Dy+(8,8) =y (&) - v"(a) —~y"'(8)(a—a).

If we assume that a(0) € int(dom(y*)), then

py.e(a) =exp (— Dy (a,a(8)) ) exp (v*(a))po(a) - (17)
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Connection with Statistics and Exponential Families(cont.)

Example (Exponential Families and their Fenchel conjugates)

For a Gaussian distribution y(8) = 262, then y*(a) = 2— For Poisson
distribution y(0) = exp(0) we have III *(a) = alog(a) — a.

Example

According to Example 1, if we use the exponential family associated to Poisson
distributions, we obtain Kullback-Leibler regularization, consisting in
minimization of

ar— %5 ,(a) —HFa)—uHL2 o BRLE). (18)

where

KL(3,a) = /Q alog(a/a) — (2— a) dx .

v

We note that the Kullback-Leibler distance is the Bregman distance associated

0 Nann dNno 1
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Connection with Statistics and Exponential Families(cont.)

Lemma

Let Q be a bounded subset of R? with Lipschitz boundary. Moreover, assume
that F is continuous w.r.t. the weak topologies on L'(Q) and L2(), respec.

Q Leta,b e D(G). Then

5 2 4
Ja- bl oy < ( 2l + 3ol ) Ki(@b). (20

(Convention: 0 - (+e0) = 0)
@ Let0# ac Ds(G), then the sets

My (M) 1= {2 € Da(G) : F (a) < M}

are Ty, sequentially compact.
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Connection with Statistics and Exponential Families(cont.)

An important consequence of (20) and Theorem 2 is that

Haa—aTH = 0(V3). (1)

L1(9)

Now, let 8, be a sequence converging to zero and ax = agi the respective

minimizers of the Tikhonov functional (8). Take by = a' for all k € N. Then,
from Lemma 1

Hak—aTHU(Q)—m, as & —0.
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Connection w/ Convex Risk Measures

Convex measure of risk

Consists of a map p : X — R satisfying the following properties:
@ Convexity.
@ Non-increasing monotonicity, i.e., Vo < vy a.e. implies p(v2) > p(v1).
@ Translation invariance, i.e., m € R deterministic implies

p(v+m)=p(v)—m. (22)

We assume that the domain Q = [0, T] x /

Theorem
The source condition (12)
(M:=F(a') o caf(a) (12)

can be interpreted as an a priori assumption on the risk associated to the
correspondent position, given the volatility level.
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Numerical Examples

Description of the Examples

@ Using a Landweber iteration technique we implemented the calibration.

@ Produced for different test variances a the option prices and added
different levels of multiplicative noise.

@ The examples consisted of perturbing a = 1 during a period of
T=0,---,0.2 and log-moneyness y varying between —5 and 5.

@ Initial guess: Constant volatility.
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Numerical Examples - Exact Solution

Ture Solution
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Numerical Examples - Exact Solution

J Ture Solution
1.4

02
0.18 13
016 |
1.2
014" |
1.1
012
01| i
0.08 0a
0.06
ok
004 |
T 0.7
00 |
X 06
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Numerical Examples 1 - noiseless - 4000 steps
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Numerical Examples 1 - error - 100 steps

Error i
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Numerical Examples 1 - error - 300 steps

Error in the reconstruction, noise-free
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Numerical Examples 1 - error - 500 steps

J Error in the reconstruction, noise free
02
0.04
018 |
0.16 0.02
0147 |
0
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Numerical Examples 1 - error - 1000 steps

Etror in the reconstruction, naise free
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Numerical Examples 1 - error - 2000 steps

J Error in the reconstruction, noise free
02
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Numerical Examples 1 - error - 4000 steps

Error in the reconstruction, noise free
0.2
0.03
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012 0.m
01" |
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Evolution of the Log of the Residual Marm
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Numerical Examples 2 - 5% noise level - 100 steps

Reconstructed parameter - noise 5%
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Numerical Examples 2 - 5% noise level - 200 steps

Reconstructed parameter - noise 5%
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Numerical Examples 2 - 5% noise level - 300 steps

Reconstructed parameter - noise 5%
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Numerical Examples 2 - 5% noise level - 400 steps
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Numerical Examples 2 - 5% noise level - Stopping criteria

Aproximated Solution - noise 5%
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Evolution of the Log of the Residual Marm
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Evolution of the Log of the [, - &Il
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Numerical Examples 2 - 5% noise level - 2000 iterations

Too many!!!
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Conclusions

@ The problem of volatility surface calibration is a classical and fundamental
one in Quantitative Finance

@ Unifying framework for the regularization that makes use of tools from
Inverse Problem theory and Convex Analysis.

@ Establishing convergence and convergence-rate results.

@ Obtain convergence of the regularized solution with respect to the noise
level in L'(Q)

@ The connection with exponential families opens the door to recent works
on entropy-based estimation methods.

@ The connection with convex risk measures required the use of techniques
from Malliavin calculus.

@ Implemented a Landweber type calibration algorithm.
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