Pricing Options on Variance in Affine Stochastic Volatility Models

Johannes Muhle-Karbe

Joint work with Jan Kallsen and Moritz Voß

6th World Congress of the Bachelier Finance Society

Toronto, June 23, 2010

Outline

Introduction

Affine Stochastic Volatility Models

Pricing Options on Variance

Numerical Illustration

Summary

Realized variance

Realized variance of a stock $S = S_0 \exp(X)$ for fixings $0 = t_0 < ... < t_N = T$:

$$\sum_{n=1}^{N} \log(S_{t_n}/S_{t_{n-1}})^2 = \sum_{n=1}^{N} (X_{t_n} - X_{t_{n-1}})^2$$

Options on variance:

- Variance swap
- Volatility swap
- ▶ Puts on variance, variance calls, etc.

Tractable pricing formulas in realistic models?

Quadratic variation

For $\sup_{n=1,...,N} |t_n - t_{n-1}| \to 0$:

$$\sum_{n=1}^N (X_{t_n} - X_{t_{n-1}})^2 o [X,X]_{\mathcal T}$$
 in probability

- ► Sepp (2008), Broadie & Jain (2008): Typically good approximation via **quadratic variation** [X, X] for daily fixings
- Exception: Short-dated call options
- Pointed out by Bühler (2006), analyzed in Keller-Ressel & M-K (2010) ⇒ Next talk!
- ▶ Here: Use approximation via quadratic variation [X, X]
- ▶ What type of structure of X makes this tractable?

Literature

For continuous stock prices without leverage:

- ▶ Benth et al. (2007): BNS model
- Carr & Lee (2007, 2009), Gatheral & Friz (2005): Model-free formulas

Models with **jumps**:

- ► Carr et al.(2005): Lévy processes
- ► Sepp (2008), Broadie & Jain (2008): Heston models with specific compound Poisson jumps
- ► Carr & Itkin (2009): Options on predictable quadratic variation $\langle X, X \rangle$ in time-changed Lévy models

Unifying framework including jumps, stochastic volatility and the leverage effect?

Fourier-Laplace methods

Carr & Madan (1999), Raible (2000): Consider European-style option (e.g. put, call) with payoff

$$f(X_T) = \int_{R-i\infty}^{R+i\infty} I(z)e^{zX_T}dz, \quad R \in \mathbb{R}$$

ightharpoonup Price unter risk-neutral measure Q given by

$$E_Q[f(X_T)] = \int_{R-i\infty}^{R+i\infty} I(z) E_Q[e^{zX_T}] dz$$

- ► Tractable via numerical quadrature, if Fourier-Laplace transform $E_Q[e^{zX_T}]$ is known, likewise for [X,X]
- Flexible model class where this is the case: **Affine processes** characterized by Duffie et al. (2003)

Definition

▶ Affine local characteristics of *X* and volatility *v*:

$$b^{(v,X)} = \beta_0 + \beta_1 v_-, \quad c^{(v,X)} = \gamma_0 + \gamma_1 v_-,$$

 $K^{(v,X)}(dx) = \kappa_0(dx) + \kappa_1(dx)v_-$

Affine conditional Fourier-Laplace transform:

$$E[e^{zX_T}|\mathcal{F}_t] = \exp(\Psi_0(T-t,z) + \Psi_1(T-t,z)v_t + zX_t),$$

where $\Psi_0(t,z) = \int_t^T \psi_0(\Psi_1(t,z),z)dt$ and

$$\partial_t \Psi_1(t,z) = \psi_1(\Psi_1(t,z),z), \quad \Psi_1(0,z) = 0$$

Generalized Riccati PIDE with

$$\psi_i(z) = \beta_i^\top z + \frac{1}{2} z^\top \gamma_i z + \int (e^{zx} - 1 - zx) \kappa_i(dx)$$
 universität wien

Examples

Includes most models from the option pricing literature:

- Lévy models
- CIR-time-change models (generalized Heston models):

$$X_t = L_{\int_0^t v_s ds} + \varrho(v_t - v_0) + \text{Drift}$$

 $dv_t = (\eta - \lambda v_t)dt + \sigma \sqrt{v_t}dZ_t$

for Lévy process L, Wiener process Z

➤ OU-time-change models (generalized BNS models):

$$X_t = L_{\int_0^t v_s ds} + \varrho Z_t + \text{Drift}$$

 $dv_t = -\lambda v_{t-} dt + dZ_t$

for Lévy process L, subordinator Z

Quadratic variation: Characterization

Definition:

$$[X,X]_t = \langle X^c, X^c \rangle_t + \sum_{s < t} \Delta X_s^2$$

Local characteristics:

$$b^{[X,X]} = c^X + \int x^2 K^X(dx), \quad c^{[X,X]} = 0,$$

 $K^{[X,X]}(G) = \int 1_G(x^2) K^X(dx) \quad \forall G \in \mathcal{B}^2$

- **Key observation**: (v, X, [X, X]) is affine in v!
- Still analytically tractable, characteristic function via generalized Riccati equations
- ► Compare $(r, \int_0^{\cdot} r_t dt)$ in affine short-rate models

Quadratic variation: Characteristic function

Fourier-Laplace transform of $[X, X]_T$:

- Need to solve generalized Riccati PIDE
- ▶ No quadratic term, since [X, X] is of finite variation
- But need to evaluate terms of the form

$$\int (e^{zx^2}-1-zx^2)K^X(dx),$$

since
$$\Delta[X,X]_t = \Delta X_t^2$$

- In many models of interest, this can be done using special functions
- Only difference compared to evaluation of stock options
- ► Then: Swaps via differentiation, options via integration

Quadratic variation: Characteristic function ct'd

Example 1: Generalized Heston model of Carr et al. (2003):

$$X_t = L_{\int_0^t v_s ds} + \rho(v_t - v_0) + \text{Drift}, \quad dv_t = (\eta - \lambda v_t) dt + \sigma \sqrt{v_t} dZ_t$$

for Lévy process L with triplet (b^L, c^L, K^L) , Wiener process Z. Then:

$$E[e^{z[X,X]_T}|\mathcal{F}_t) = e^{\Psi_0(T-t,z) + \Psi_1(T-t,z)v_t + z[X,X]_t}$$

$$\Psi_1(t,z) = \frac{2g(z)(e^{f(z)t}-1)}{f(z)-\lambda+e^{f(z)t}(f(z)+\lambda)}$$

$$\qquad \qquad \Psi_0(t,z) = \frac{2\eta}{\sigma^2} \log \left(\frac{2f(z)e^{t(f(z)+\lambda)/2}}{f(z)-\lambda + e^{f(z)t}(f(z)+\lambda)} \right)$$

•
$$f(z) = \sqrt{\lambda^2 - 2\sigma^2 g(z)}$$
, $g(z) = (\sigma^2 \rho^2 + c^L)z + \int (e^{zx^2} - 1)K^L(dx)$ typically known in terms of special functions

Quadratic variation: Characteristic function ct'd

Example 2: Model of Barndorff-Nielsen & Shephard (2001):

$$dX_t = (\mathrm{Drift})dt + \sqrt{v_{t-}}dW_t + \rho dZ_t, \quad dv_t = -\lambda v_{t-}dt + dZ_t$$

for compound poisson process Z with rate a and $\exp(b)$ -jumps. Then:

$$E[e^{z[X,X]_T}|\mathcal{F}_t) = e^{\Psi_0(T-t,z) + \Psi_1(T-t,z)\nu_t + z[X,X]_t}$$

- $\Psi_1(t,z) = \frac{1-e^{-\lambda t}}{\lambda}z$
- ▶ $\Psi_0(t,z) = \frac{ab}{2\sqrt{-\rho^2 z}} \int_0^t U\left(\frac{1}{2}, \frac{1}{2}, \frac{(b-\Psi_1(s,z))^2}{-4\rho^2 z}\right) ds at$ for hypergeometric *U*-function
- ▶ One extra *dt*-integral compared to generalized Heston

Pricing Options on Variance

Variance swaps

► Choose swap rate K_{var} such that

$$E_{\mathcal{O}}([X,X]_T - K_{var}) = 0$$

Differentiation of the characteristic function:

$$E_Q([X,X]_T|\mathscr{F}_t) = [X,X]_t + \partial_u \Psi_0(T-t,0) + \partial_u \Psi_1(T-t,0) v_t$$

- Variance swap dynamics are (inhomogeneously) affine!
- Opens the door to mean-variance hedging etc.
- ▶ Moreover: Explicit formulas for K_{var} in concrete models, e.g.,

$$K_{var} = \left(rac{e^{-\lambda T}-1+\lambda T}{\lambda^2}
ight)rac{a}{b} + rac{2a\varrho^2}{b^2}T + rac{1-e^{-\lambda T}}{\lambda}v_0$$

for BNS model from above

Pricing Options on Variance

European payoffs $f([X, X]_T)$

▶ Volatility swap: $f(x) = \sqrt{x} - K_{vol}$, hence

$$K_{vol} = \frac{1}{2\sqrt{\pi}} \int_0^\infty \frac{1 - E_Q[e^{-z[X,X]_T}]}{z^{3/2}} dz$$

▶ Put on variance: $f(x) = (K - x)^+$, hence

$$E_Q[(K-x)^+] = \frac{1}{2\pi i} \int_{R-i\infty}^{R+i\infty} \frac{e^{-Kz}}{z^2} E_Q[e^{z[X,X]_T}] dz, \quad R < 0$$

- Evaluation via numerical quadrature
- ▶ Similar but simpler formulas for $\langle X, X \rangle$. No special functions, just one dz-integration
 - \Rightarrow Good approximation?

Numerical Illustration

Variance and volatility swaps

Above BNS model with calibrated parameters of Schoutens (2003):

▶ Considerable difference between quadratic variation [X, X] and its predictable counterpart $\langle X, X \rangle$

iversität

Numerical Illustration

Puts on variance

Above BNS model with calibrated parameters of Schoutens (2003):

▶ Again systematic error for approximation of [X, X] with $\langle X, X \rangle$

Summary

Pricing options on variance in affine stochastic volatility models

- ▶ Approximation of realized variance by [X, X]
- ▶ Affine structure of (v, X) passed on to (v, X, [X, X])
- Characteristic function via generalized Riccati equations
- Variance swap prices via differentiation, volatility swaps, puts, calls etc. via numerical quadrature
- Integrands somewhat more involved than for stock options (special functions!), but still tractable
- ▶ Price processes of variance swaps are inhomogeneously affine

For more details:

Kallsen, J., Muhle-Karbe, J., and M. Voß (2010). Pricing options on variance in affine stochastic volatility models. Forthcoming in *Mathematical Finance*. Available at www.mat.univie.ac.at/~muhlekarbe

