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Introduction

Realized variance

Realized variance of a stock S = Sp exp(X) for fixings
O=ty<...<ty=T:

N

N
Z |Og(5tn/5t"71)2 = Z(th - th71)2
n=1

n=1

Options on variance:
» Variance swap
» Volatility swap

» Puts on variance, variance calls, etc.

Tractable pricing formulas in realistic models?
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Introduction

Quadratic variation

For sup,_1,. n |th — th—1| — O:

N
> (Xe, — Xe,_y)* = [X, X]7  in probability
n=1

» Sepp (2008), Broadie & Jain (2008): Typically good
approximation via quadratic variation [X, X] for daily fixings
» Exception: Short-dated call options

» Pointed out by Biihler (2006), analyzed in Keller-Ressel &
M-K (2010) = Next talk!

» Here: Use approximation via quadratic variation [X, X]
» What type of structure of X makes this tractable?

universitat
wien



Introduction

Literature

For continuous stock prices without leverage:
» Benth et al. (2007): BNS model

» Carr & Lee (2007, 2009), Gatheral & Friz (2005): Model-free
formulas

Models with jumps:
» Carr et al.(2005): Lévy processes

> Sepp (2008), Broadie & Jain (2008): Heston models with
specific compound Poisson jumps

» Carr & Itkin (2009): Options on predictable quadratic
variation (X, X) in time-changed Lévy models

Unifying framework including jumps, stochastic volatility and the
leverage effect? :




Introduction

Fourier-Laplace methods

Carr & Madan (1999), Raible (2000): Consider European-style
option (e.g. put, call) with payoff

R+ioco
f(XT) = / I(z2)e”Tdz, ReR

R—ioco
» Price unter risk-neutral measure @ given by
R+ioco
Eqlf(Xr)) = [ I(2)Eqle™"1dz
R—ioco
» Tractable via numerical quadrature, if Fourier-Laplace

transform Eq[e®T] is known, likewise for [X, X]

» Flexible model class where this is the case: Affine processes
characterized by Duffie et al. (2003) :




Affine Stochastic Volatility Models

Definition

» Affine local characteristics of X and volatility v:

bX) = Bo+ prve, ) =90+ v,

» Affine conditional Fourier-Laplace transform:
E[e™T|F] = exp(Wo(T — t,z) + W1 (T — t, z)ve + 2X;),
where Wy(t,z) = ftT o(W1(t, z), z)dt and
OVi(t,z) = Y1(Vi(t,2),2z), Wi1(0,z) =0

» Generalized Riccati PIDE with

vil2) = B2+ 52 iz + [ (e -




Affine Stochastic Volatility Models

Examples

Includes most models from the option pricing literature:

> Lévy models

» CIR-time-change models (generalized Heston models):
X; = Lfot vas T o(vs — wo) + Drift
dvi = (n — Avy)dt + o/vedZ;

for Lévy process L, Wiener process Z
» OU-time-change models (generalized BNS models):
Xt = Lj‘ot Vst + QZt + Dr|ft

th = —)\thdt + dZt

for Lévy process L, subordinator Z




Affine Stochastic Volatility Models

Quadratic variation: Characterization

» Definition:
[X,X]e = (X, X)e + > AXZ

s<t

Local characteristics:

pX X = X 4 /X2Kx(dx), XX = o,

v

KXX(G) = /lg(xz)KX(dx) VG € B2

v

Key observation: (v, X, [X, X]) is affine in v!
Still analytically tractable, characteristic function via
generalized Riccati equations

v

v

Compare (r, [, r:dt) in affine short-rate models




Affine Stochastic Volatility Models

Quadratic variation: Characteristic function

Fourier-Laplace transform of [X, X]t:

>

>

>

Need to solve generalized Riccati PIDE
No quadratic term, since [X, X] is of finite variation

But need to evaluate terms of the form
/(eZx2 —1— 2x®)KX(dx),

since A[X, X]; = AX?
In many models of interest, this can be done using special
functions

Only difference compared to evaluation of stock options

Then: Swaps via differentiation, options via integration
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Affine Stochastic Volatility Models

Quadratic variation: Characteristic function ct'd
Example 1: Generalized Heston model of Carr et al. (2003):

Xt = Lft veds + p(Vt — Vo) + DI’Iﬂ'.7 th = (T] — )\Vt)dt + O'\/V>tdZt
0

for Lévy process L with triplet (bt, ct, KL), Wiener process Z.
Then:

E[eZ[X’X]T|.Ft) — e\llo(Tft,z)Jr\IJl(Tft,z)vt+z[X,X]t

2(2)(¢/9" 1)
F@)- At e @ (F(z) 1)

5 2f(z)e (F(z)+N)/2
> Wo(t Z) 77 2 log <f(z),)\+ef(z)f(f(z)+/\))

> (z) = /N —20%g(2), 8(2) = (020 + L)z + [(e” — 1)K (dx)

typically known in terms of special functions _

> wl(taz)




Affine Stochastic Volatility Models

Quadratic variation: Characteristic function ct'd

Example 2: Model of Barndorff-Nielsen & Shephard (2001):
dXt = (ant)dt + Vt_th + det, th = —)\Vt_dt + dZt

for compound poisson process Z with rate a and exp(b)-jumps.
Then:

E[eZ[X’X]T|.Ft) — e\llo(Tft,z)+\|11(Tft,z)vt+z[X,X]t

> Vy(t,z) = l_id z

1 1 (b—Wi(s,2))?
» \Uo(t,z) m‘fo (2’§’+p22) ds — at for
hypergeometric U-function

» One extra dt-integral compared to generalized Heston




Pricing Options on Variance

Variance swaps

» Choose swap rate K, such that
EQ([Xa X]T - Kvar) =0

Differentiation of the characteristic function:

v

Eo([X, X]7|-%¢) = [X, X]e+8,Wo(T —t,0)+9,W1(T —t,0)v;

v

Variance swap dynamics are (inhomogeneously) affine!

v

Opens the door to mean-variance hedging etc.

v

Moreover: Explicit formulas for K, in concrete models, e.g.,

AT 14T 2a0? 1—e= AT
Kyar = (%) % + bg T+ e)\ Vo

for BNS model from above
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Pricing Options on Variance
European payoffs f([X, X]r)
» Volatility swap: f(x) = /x — Kyo/, hence

% 1 — Egle=2XXI7]

1
carh e

Ko dz

» Put on variance: f(x) = (K — x)™, hence

+ 1 R g7k 2[X.X]1
Eol(K — x) ]:%/R_, - Eqle®XI]dz, R <0

» Evaluation via numerical quadrature

» Similar but simpler formulas for (X, X). No special functions,
just one dz-integration
= Good approximation?
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Numerical lllustration

Variance and volatility swaps

Above BNS model with calibrated parameters of Schoutens (2003):
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» Considerable difference between quadratic variation [X, X]
and its predictable counterpart (X, X)
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Numerical lllustration

Puts on variance

Above BNS model with calibrated parameters of Schoutens (2003):

Variance Put Prices
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» Again systematic error for approximation of [X, X] with (X, X)
) Lniversitat
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Summary

Pricing options on variance in affine stochastic volatility models

>

For
| 4

Approximation of realized variance by [X, X]
Affine structure of (v, X) passed on to (v, X, [X, X])
Characteristic function via generalized Riccati equations

Variance swap prices via differentiation, volatility swaps, puts,
calls etc. via numerical quadrature

Integrands somewhat more involved than for stock options
(special functions!), but still tractable

Price processes of variance swaps are inhomogeneously affine

more details:

Kallsen, J., Muhle-Karbe, J., and M. VoB (2010). Pricing options on variance in
affine stochastic volatility models. Forthcoming in Mathematical Finance.
Available at www.mat.univie.ac.at/~muhlekarbe
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