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Introduction

We consider the point of view of an agent who possesses

a portfolio of assets

an indivisible asset : small family firm, piece of land, factory etc...

He wants to maximize his total wealth at the sell time of the indivisible asset.

=⇒ This was introduced by Henderson and Hobson :

"An explicit solution for an optimal stopping/optimal control problem which
models an asset sale", The annals of Applied Probability, 2008.
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The context

We consider the problem w(x) = supX E
ˆ
G(XT )

˜
.

where X is a martingale, G is a concave value function and T > 0.

By optimality : w(x) ≥ G(x)

By Jensen’s inequality : w(x) ≤ supX E
ˆ
G(XT )

˜
≤ U(x)

Then w(x) = G(x) and the optimal strategy is to keep the wealth constant.
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The mixed investment/sale problem

We consider (Ω,F ,F,P) a filtered probability space. Let B be a Ft Brownian
motion valued in R.

Let Y be the price process of one unit of an indivisible asset modelled by

dYt = µ(Yt)dt + σ(Yt)dBt Y0 = y > 0

Moreover, we assume :
µ(0) > 0 and σ(0) = 0

We consider a concave function U from R+ to R+.
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The mixed investment/sale problem

We want to solve the following problem

V (x , y) = sup
X∈M⊥(x,y)

τ∈T

E[U(Xτ + Y y
τ )]

where

(i) (x , y) ∈ D =
˘
R× R+

∗ ; x + y ≥ 0
¯
.

(ii) M⊥(x , y) =


X càdlàg martingale such that for all t ≥ 0

E[Xt ] = x ; [X ,Y y ]t = 0; Xt + Y y
t ≥ 0

ff
.

(iii) τ ∈ T where T is the set of all stopping times adapted to F.
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Dynamic Programming Equation in a continuous framework

V 0(x , y) := sup
α∈A⊥(Y )
τ∈T

E
»
U
`
x +

Z τ

0
αu dWu + Y y

τ

´–
where

W is an Ft Brownian motion valued in R such that 〈W ,B〉t = 0.

A⊥(Y ) is the "continuous version" ofM⊥(Y ).

Define the lower semicontinuous hull of V 0 by

V 0
∗ (x , y) = lim inf

x′→x
y ′→y

V 0(x , y)

Proposition

Assume that V 0 is locally bounded, then V 0
∗ is a viscosity supersolution of

min{−1
2
σ(y)2vyy − µ(y)vy ;−vxx ; v − U(x + y)} = 0 on D
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Dynamic Programming Equation in a continuous framework

We assume that :

∀x ∈ R+
∗ σ

2(y) > 0 and |µ(y)|
σ2(y)

∈ L1
loc
`
R+
∗
´

We consider the process Z defined by Z := S
`
Y y´ where S is the solution of

µ(y)S ′(y) +
1
2
σ2(y)S ′′(y) = 0

=⇒ S is correctly defined and Z is a local martingale.
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Dynamic Programming Equation in a continuous framework

Let us introduce D ′ =
˘

(x , z) ∈ R2 : x + S−1(z) ≥ 0
¯
.

Define V̄ 0(x , z) := V 0 `x , S−1(z)
´
and V̄ 0

∗ its associated upper semicontinuous
hull on D ′.

We define Ū(x , z) := U
`
x + S−1(z)

´
.

Proposition

Assume that V̄ 0 is locally bounded. Then V̄ 0
∗ is a viscosity supersolution of

min

− v̄yy ; −v̄xx ; v̄ − Ū

ff
= 0 on D ′
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Determination of the Value function

We define Ū∞ by Ū∞ = limn Ūn where
`
Ūn
´
n is such that

Ū0 = Ū

Ū2n = (Ū2n−1)concx

Ū2n+1 = (Ū2n)concy

Then for all (x , y) in D, V (x , y) ≥ V 0(x , y) ≥ Ū∞
`
x ,S(y)

´
Thanks to convolution arguments, we can regularize Ū∞. Applying Itô’s
formula, we get that Ū∞(Xt ,Zt) is a positive supermartingale and then :

V (x , y) ≤ sup
X∈M⊥(x,y)

τ∈T

E[Ū∞(Xτ ,Zτ )] ≤ Ū∞
`
x ,S(y)

´

Then for all (x , y) ∈ D, V (x , y) = Ū∞
`
x , S(y)

´
.

Emilie Fabre and Nizar Touzi Optimal Liquidation of an Indivisible Asset



Determination of the Value function
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`
x ,S(y)

´

Then for all (x , y) ∈ D, V (x , y) = Ū∞
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The ε-optimal strategies

For two given random variables (u, v),

We define the random variable ηn
i by :

ηn
i (u, v) =

8<: an
i (u, v) with proba pn

i (u, v)

bn
i (u, v) with proba 1− pn

i (u, v)

and u = pn
i (u, v)an

i (u, v)+
`
1− pn

i (u, v)
´
bn

i (u, v).
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The ε-optimal strategies

We define the pure jump martingale X n as follows :

X n
t = x ∀t ∈ [0, τn

1 [

X n
t = ηn

1(X n
τn
0
,Zτn

1
) ∀t ∈ [τn

1 , τ
n
2 [

...

X n
t = ηn

i (X n
τn
i−1
,Zτn

i
) ∀t ∈ [τn

i , τ
n
i+1[

=⇒ Optimal investment problem with fixed random maturity and non
concave utility function

We define the sequence of stopping times (τn)n≥0 for i ∈ {0 . . . n + 1} by

τn
0 = inf

˘
t ≥ 0 : Ū∞(x ,Zt) = Ū2n+1(x ,Zt)

¯
τn
i = inf

˘
t ≥ τn

i−1 : Ū2(n−i+1)+1(X n
τn
i−1
,Zt) = Ū2(n−i+1)(X n

τn
i−1
,Zt)

¯
...

τn
n+1 = inf

˘
t ≥ τn

n : Ū1(X n
τn
n
,Zt) = Ū0(X n

τn
n
,Zt)

¯
=⇒ Optimal stopping problem with fixed investment
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The ε-optimal strategies

Proposition

Assume that ∃K compact subset of D ′ such that
∀(x , z) /∈ K Ū∞(x , z) = Ū(x , z)

Then for all (x , y) in D, for any positive constant ε, there exists n such that

ε+ E
»
Ū0(X n

τn
n+1
,Xτn

n+1
)

–
≥ Ū∞(x ,S(y))

and

Ū∞(x , S(y)) = lim
n→∞

E
»
Ū0(X n

τn
n+1
,Zτn

n+1
)

–
where (X n, τn

n+1) ∈M⊥(x , y)× T are ε-optimal strategies.

Suppose that for all y > 0, µ(y) ≤ 0, then

V (x , y) = U
`
x + y

´
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The ε-optimal strategies

Idea of the proof :

Ū∞
`
x , S(y)

´
=

n+1X
i=1

E
»
Ū2(n−i+1)+1`X n

τn
i−1
,Zτn

i−1
)− Ū2(n−i+1)(X n

τn
i−1
,Zτn

i

´–

+
nX

i=1

E
»
Ū2(n−i+1)`X n

τn
i−1
,Zτn

i
)− Ū2(n−i+1)−1(X n

τn
i
,Zτn

i

´–
+ E

»
Ū0`X n

τn
n
,Zτn

n+1

´–
+εn
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An existence result

We assume ∃N > 0 such that ∀n ≥ N Ū∞ = Ūn

This assumption is realistic since our problem with a power and positive
utility function could be obtained with an N equal to 2.

The optimal rules XN and τN
N+1 are optimal strategies. That is to say,

V (x , y) = E
»
U
`
XN
τN
N+1

+ Y y
τN
N+1

´–
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Conclusion

Our results are consistent with those obtained by Hobson and Henderson for a
power utility function but we generalize their work in several ways.

We use a more general diffusion for the indivisible asset Y .

Our problem considers a more general utility function.

We provide a new methodology to solve this problem.

What we have to do now :

We have to check the case a of non positive utility function.
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