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Position of the problem

Let Y 1 and Y 2 denote the expected profit and cost yields
respectively. The constituants of the cash flows are:

I The profit yield per unit time dt is ψ1 and the cost yield is ψ2;

I When exiting/abandoning the project at time t, the incurred
cost is a(t) and the incurred profit is b(t) (usually a 6= b but
often non-negative).

Exit/abandonment strategy:

The decision to exit the project at time t, depends on whether

Y 1
t ≤ Y 2

t − a(t) or Y 2
t ≥ Y 1

t + b(t).
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A Snell envelop formulation

If Ft denotes the history of the project up to time t, the expected
profit yield, at time t, is

Y 1
t = ess supτ≥tE

[∫ τ

t
ψ1(s,Y 1

s )ds +
(
Y 2

τ − a(τ)
)
1[τ<T ] + ξ11[τ=T ]|Ft

]
;

where, the sup is taken over all exit times τ from the project.

The optimal exit time related to the incurred cost Y 2− a should be

τ∗t = inf{s ≥ t, Y 1
s = Y 2

s − a(s)} ∧ T .
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The expected cost yield at time t, is

Y 2
t = ess infσ≥tE

[∫ σ

t
ψ2(s,Y 2

s )ds +
(
Y 1

σ + b(σ)
)
1[σ<T ] + ξ21[σ=T ]|Ft

]
;

where, the inf is taken over all exit times σ from the project.

The optimal exit time related to the incurred profit Y 1 + b should
be

σ∗t = inf{s ≥ t, Y 2
s = Y 1

s + b(s)} ∧ T .
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Problem formulation

Establish existence and uniqueness of (Y 1,Y 2) which solves the
coupled system of Snell envelops

Y 1
t = ess supτ≥tE

[∫ τ
t ψ

1(s,Y 1
s )ds +

(
Y 2

τ − a(τ)
)
1[τ<T ] + ξ11[τ=T ]|Ft

]
,

Y 2
t = ess infσ≥tE

[∫ σ
t ψ

2(s,Y 2
s )ds +

(
Y 1

σ + b(σ)
)
1[σ<T ] + ξ21[σ=T ]|Ft

]
.
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Related problems

I One-sided obstacles: The switching problem;

I Fully two-sided obstacles: The switching games problem;

I The multiple-phases membrane problem.
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Set up

I B := (Bt)0≤t≤T a Brownian motion on a probability space
(Ω,F ,P).

I (Ft)0≤t≤T the completed natural filtration of B.

I X := (Xt)0≤t≤T a diffusion process which stands for factors
which determine the price of the underlying commodity we
wish to control such as e.g. the price of electricity in the
energy market.
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The Snell envelop versus reflected BSDEs

I S2 denotes the set of all right-continuous with left limits

processes Y satisfying E
(
supt∈[0,T ] |Y 2

t |
)
<∞.

I Md ,2 denotes the set of F-adapted and d-dimensional

processes Z such that E
(∫ T

0 |Zs |2ds
)
<∞.

I A+ denotes the set of right-continuous with left limits and
increasing processes K .

I A+,2 the subset of A+ consisting of all the processes K
satisfying, in addition, E (K 2

T ) <∞.
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Let ξ ∈ L2(FT ,P), f (t, ω, y , z) be uniformly Lipschitz in (y , z) and
is such that f (t.ω, 0, 0) ∈M1,2, and S := (St)t≤T an R-valued,
continuous and uniformly square integrable s.t. ST ≤ ξ. Assume
Ft-adaptation. Then

Theorem (El-Karoui et al., ’97) There exists a unique triple
(Yt ,Zt ,Kt)t≤T , valued in R1+d+1 and Ft-adapted (K continuous
and increasing) such that{

Yt = ξ +
∫ T
t f (s,Ys ,Zs)ds + KT − Kt −

∫ T
t ZsdBs , t ≤ T ;

Yt ≥ St and
∫ T
0 (Yt − St)dKt = 0.

In addition, Y satisfies

Yt = ess supτ≥tE [

∫ τ

t
f (s, ω,Ys ,Zs)ds + Sτ1[τ<T ] + ξ1[τ=T ]|Ft ].
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The Markovian framework: Connection with systems of
PDEs

Let (t, x) ∈ [0,T ]× Rk and let (X t,x
s )s≤T be the solution of the

following standard SDE. X t,x
s = x +

∫ s

t
b(u,X t,x

u )du +

∫ s

t
σ(u,X t,x

u )dBu, s ∈ [t,T ]

X t,x
s = x , if s ≤ t.

Assume

I f (s, ω, y , z) = f (s,X t,x
s (ω), y , z)

I ξ = g(X t,x
T )

I Ss = h(s,X t,x
s ).
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Then, again by a result in El-Karoui et al., (’97), there exists a
continuous deterministic function v(t, x) such that, for any
s ∈ [t,T ], Ys = v(s,X t,x

s ). Moreover v is the unique viscosity
solution of

min{v − h,−Gv − f (t, x , v , σ(t, x)Dxv)} = 0;
v(T , x) = g(x),

where,
G = ∂t + L,

and L is the infinitesimal generator of X t,x .
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Cash-flows: A system of reflected BSDEs formulation

By El-Karoui et al. ’97, (Y 1,Y 2) should solve the following system
of RBSDEs:

Y 1
t = ξ1 +

∫ T
t ψ1(s,Y 1

s )ds + (K 1
T − K 1

t )−
∫ T
t Z 1

s dBs ,

Y 2
t = ξ2 +

∫ T
t ψ2(s,Y 2

s )ds − (K 2
T − K 2

t )−
∫ T
t Z 2

s dBs ,

Y 1
t ≤ Y 2

t − a(t), Y 2
t ≥ Y 1

t + b(t), 0 ≤ t ≤ T ,∫ T
0

(
Y 1

t − (Y 2
t − a(t))

)
dK 1

t = 0,
∫ T
0 (Y 1

t + b(t)− Y 2
t )dK 2

t = 0.
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Minimal and maximal solutions

We make the following assumptions:

(B1) For each i = 1, 2, the process ψi depends explicitly on (t,Y i
t ).

Moreover, (t, y) → ψi (t, y)’s are Lipschitz continuous with
respect to y and satisfy,

E

(∫ T

0
|ψi (t, 0)|2ds

)
<∞.

Boualem Djehiche KTH, Stockholm An optimal stopping problem related to cash-flows of investments under uncertainty



(B2) The obstacles a and b are continuous and in S2. Moreover,
they admit a semimartingale decomposition:

a(t) = a(0) +

∫ t

0
U1

s ds +

∫ t

0
V 1

s dBs ,

b(t) = b(0) +

∫ t

0
U2

s ds +

∫ t

0
V 2

s dBs ,

for some F-prog. meas. processes U1,V 1,U2 and V 2.

(B3) ξi ’s are in L2(FT ) and satisfy

ξ1 − ξ2 ≥ max{−a(T ),−b(T )}, P − a.s.
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The main result

Let the coefficients (ψ1, ψ2, a, b, ξ1, ξ2) satisfy Assumptions
(B1)-(B3). Then the system of RBSDEs admits a minimal and a
maximal F-prog. meas. solutions (Y 1,Y 2,Z 1,Z 2,K 1,K 2) and
(Ȳ 1, Ȳ 2, Z̄ 1, Z̄ 2, K̄ 1, K̄ 2), respectively, which are in
(S2)2 × (Md ,2)2 × (A+,2)2.

Moreover,

I the processes Y i and Ȳ i , i = 1, 2 are P−a.s. continuous and
admit the above Snell representations.

I the random times τ∗ and σ∗ defined above and associated
with either Y i or Ȳ i , are optimal stopping times.
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A minimal solution through the increasing sequences
scheme

Start with the pair (Y 1,0, Z 1,0) that solves uniquely the BSDE

Y 1,0
t = ξ1 +

∫ T

t
ψ1(s,Y 1,0

s )ds −
∫ T

t
Z 1,0

s dBs .

and introduce the following system of RBSDEs

dY 2,n+1
s = ψ2(s,Y 2,n+1

s )ds − dK 2,n+1
s − Z 2,n+1

s dBs ,

dY 1,n+1
s = ψ1(s,Y 1,n+1

s )ds + dK 1,n+1
s − Z 1,n+1

s dBs ,

Y 2,n+1
s ≥ Y 1,n

s + b(s), Y 1,n+1
s ≤ Y 2,n+1

s − a(s), 0 ≤ s ≤ T ,∫ T
0 (Y 1,n+1

t − (Y 2,n+1
t − a(t))dK 1,n+1

t = 0, Y 1,n+1
t = ξ1;∫ T

0 (Y 1,n
t + b(t)− Y 2,n+1

t )dK 2,n+1
t = 0, Y 2,n+1

t = ξ2.

Boualem Djehiche KTH, Stockholm An optimal stopping problem related to cash-flows of investments under uncertainty



This sequence of solutions satisfies the following properties:

I For any n ≥ 0, both (Y 1,n,Z 1,n,K 1,n) and
(Y 2,n+1,Z 2,n+1,K 2,n+1) exist and are in S2 ×Md ,2 ×A+,2.

I The two sequences (Y 1,n)n≥0 and (Y 2,n)n≥1 are increasing in
n, meaning that for all n ≥ 0,

Y 1,n
t ≤ Y 1,n+1

t and Y 2,n+1
t ≤ Y 2,n+2

t P-a.s. and for all t.

I the limit process (Y 1,Y 2) of (Y 1,n
t ,Y 2,n

t ) is continuous, a
minimal solution of our system of RBSDEs and admits a Snell
envelop representation.
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A maximal solution through the decreasing sequences
scheme

Start with the pair (Ȳ 2,0, Z̄ 2,0) that solves the standard BSDE

Ȳ 2,0
t = ξ2 +

∫ T

t
ψ2(s, Ȳ 2,0

s )ds −
∫ T

t
Z̄ 2,0

s dBs ,

and introduce the following system of RBSDEs

dȲ 1,n+1
s = ψ1(s, Ȳ 1,n+1

s )ds + dK̄ 1,n+1
s − Z̄ 1,n+1

s dBs ,

dȲ 2,n+1
t = ψ2(s, Ȳ 2,n+1

s )ds − dK̄ 2,n+1
s − Z̄ 2,n+1

s dBs ,

Ȳ 1,n+1
s ≤ Ȳ 2,n

s − a(s), Ȳ 2,n+1
s ≥ Ȳ 1,n+1

s + b(s), 0 ≤ s ≤ T ,∫ T
0 (Ȳ 1,n+1

t − (Ȳ 2,n
t − a(t))dK̄ 1,n+1

t = 0, Ȳ 1,n+1
T = ξ1,∫ T

0 (Ȳ 1,n+1
t + b(t)− Ȳ 2,n+1

t )dK̄ 2,n+1
t = 0, Ȳ 2,n+1

T = ξ2.
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This sequence of solutions satisfies the following properties.

I For any n ≥ 0, both (Ȳ 2,n, Z̄ 2,n, K̄ 2,n) and
(Ȳ 1,n+1, Z̄ 1,n+1, K̄ 1,n+1) exist and are in S2 ×Md ,2 ×A+,2.

I The two sequences (Ȳ 1,n)n≥1 and (Y 2,n)n≥0 are decreasing in
n, meaning that for all n ≥ 0,

Ȳ 1,n
t ≥ Ȳ 1,n+1

t and Ȳ 2,n+1
t ≥ Ȳ 2,n+2

t P-a.s. and for all t.

I the limit process (Ȳ 1, Ȳ 2) of (Ȳ 1,n
t , Ȳ 2,n

t ) is continuous, a
maximal solution of our system of RBSDEs and admits a Snell
envelop representation.
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Non-uniqueness: A counter example

Assume

I ψ1(t, ω, y) = y and ψ2(t, ω, y) = 2y ,

I a = b = 0 and ξ1 = ξ2 = 1.

The corresponding system of BSDEs is
Y 1

t = 1 +
∫ T
t Y 1

s ds −
∫ T
t Z 1

s dBs +
(
K 1

T − K 1
t

)
,

Y 2
t = 1 + 2

∫ T
t Y 2

s ds −
∫ T
t Z 2

s dBs −
(
K 2

T − K 2
t

)
,

Y 1
t ≥ Y 2

t , t ≤ T ,∫ T
0

(
Y 1

s − Y 2
s

)
d(K 1

s + K 2
s ) = 0.
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It can be ckecked that(
eT−t , eT−t , 0, 0, 0, eT (1− e−t)

)
and (

e2(T−t), e2(T−t), 0, 0,
1

2
e2T (1− e−2t), 0)

)
are solutions of the system of BSDEs.
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A uniqueness result

Theorem. Assume that

(i) the mappings ψ1 and ψ2 do not depend on y , i.e.,
ψi := (ψi (t, ω)), i = 1, 2,

(ii) the barriers a and b satisfy

P − a.s.

∫ T

0
1[a(s)=b(s)]ds = 0.

Then, the solution of the system of BSDE’s is unique.
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The Markovian framework. A PDE formulation

When the dependence of (Y 1,Y 2) on the sources of uncertainty
(the diffusion process X t,x) is explicit, we can show that there
exists two deterministic functions u1 and u2 such that

Y 1
s = u1(s,X t,x

s ), Y 2
s = u2(s,X t,x

s ),

and are viscosity solutions of the following system of variational
inequalities:

min{u1(t, x)− u2(t, x) + a(t),−Gu1(t, x)− ψ1(t, x , u1(t, x))} = 0,
max{u1(t, x) + b(t)− u2(t, x),Gu2(t, x) + ψ2(t, x , u2(t, x))} = 0,
u1(T , x) = g1(x), u2(T , x) = g2(x).

Through a counter-example, we can show that the system may
have infinitely many solutions.
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