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Risk Measurement

Security positions today
e Hundreds or thousands of securities
e Stocks, bonds, options, swaps, structured products
e Equities, fixed income, foreign exchange, commodities

Security values at risk horizon T
e Multiple underlying financial factors
Financial model: distribution of factors at T

Security prices at T in state w

Prices depend on cashflows from time T to T

Distribution of portfolio losses L(w)

Risk measure
e Distribution of losses L(w) is mapped to a risk measure p(L)
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The Risk Measurement Problem

f Time t
0

e Today: t =0
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The Risk Measurement Problem

L(w)
/_\) «w
f } Time t
0 T

e Today: t =0
e Risk horizon: t =T
w = state attime T

L(w) = portfolio loss at time T, given state w
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The Risk Measurement Problem

L(w) cashflows
s
w 2 2 2 ¢
T

0 T

Time t

e Today: t =0
e Risk horizon: t =71
w = state attime T
L(w) = portfolio loss at time T, given state w
e [ (w) depends on realized cashflows between T and T
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The Risk Measurement Problem

L(w) cashflows

—

; © 2 times
0 T T

e Today: t =0

e Risk horizon: t =71
w = state attime T
L(w) = portfolio loss at time T, given state w

e [ (w) depends on realized cashflows between T and T
e Risk measure p(L) € R

Probability of large loss: P(L > c)

VAR4(L) =inf{c : P(L=c¢) < o}

CVARL(L) =E[L|L = VAR (L)]

Coherent risk measures ...
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Related Literature

e Uniform nested simulation

e Lee (1998)
¢ Lee and Glynn (2003)
¢ Gordy and Juneja (2006, 2008)

e Importance sampling
¢ Glasserman, Heidelberger, Shahabuddin (2000)

e Stochastic kriging
e Liu and Staum (2009)
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The Risk Measurement Problem

w1

w2
wi

Wn

} Time t

e Simulate w1q,...,wn
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The Risk Measurement Problem

w)
w>
: Zin
o=
Zi,m
wWn
} } } Time t
0 T T
e Simulate w1q,...,wn
e For each w;: simulate future portfolio cashflows Z; 1,..., Zim

. 1 &« - :
Li= > Zi,J} estimate of loss L(w;)
j=1
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The Risk Measurement Problem

w)
w>
: Zin
o=
Zi,m
wWn
} } } Time t
0 T T
e Simulate w1q,...,wn
e For each w;: simulate future portfolio cashflows Z; 1,..., Zim

m
= Zi,j} estimate of loss L(w;)

e Estimate probability of loss

n
Z {Li=c}

S\H
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Probability of Loss: Gaussian Example

e First stage: L(wj) = w;, where w; ~ N(O, criz)
e Second stage: Z; ; = w; + €; j, where €; j ~ N(0O, 022)

¢ Probability of loss: @ =P(L >c¢) = ®(—c/o1)

Estimator: & = %z?zl l{iizc} where lA.i =L;+ % zyil Zi’j
Mean-Squared Error (MSE):

MSE = E[(& — «)?]
= E[(& — E(&))?] + (E[& — «])?

= Variance + Bias?
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Bias Illustration

0 c L,

ForLi>¢, 1y} =1,but E[ly; . 41=PlLi=c) <1,
The local bias is negative: E[1¢; .. — 1] <O0.
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Bias Illustration

0 L, c

ForLi < ¢, 1y;.c} =0, but E[1y; . 41=P(Li = ¢) >0,
The local bias is positive: E[1; .. — 0] > 0.
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Optimal MSE Formulation

wn

} Time t

n first stage samples
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Optimal MSE Formulation

w1
w?2
21,1
w, < :
: Zi,m
Wn
} } } Time t
0 T T
n first stage samples m second stage samples
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Optimal MSE Formulation

w1
w2
Zi,l
Zi,m
wn
} } } Time t
0 T T
m second stage samples

n first stage samples
total work: k = mn

Broadie, Du and Moallemi: Risk Estimation via Nested Sequential Simulation



Optimal MSE Formulation

w1
w2
Zi,l
Zi,m
wn
} } } Time t
0 T T
m second stage samples

n first stage samples
total work: k = mn

Optimal allocation problem:
minimize MSE
n,m
subjectto nm =k
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Bias and Variance

n

Z 1{iizc}

. 1

x=P(L =c) X =—

n
i=1

MSE = E [ (& — E&)® | + (E[o - &] )

o J

~

v
variance bias?
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Bias and Variance

n

Z l{iizc}

A |

x=P(L =c) X=—

n:
i=1

MSE = E[ (& - E&02] + (E[— &1)°

. J

Y Y

variance bias?

Under mild technical assumptions, as m,n 1 co:

. (1 - @) .
variance - —— bias — Y
n m
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Bias and Variance

n

Z l{iizc}

A |

x=P(L =c) X=—

n:
i=1

MSE = E[ (& - E&02] + (E[— &1)°

Y Y

variance bias?

Under mild technical assumptions, as m,n t co:

. (1l - x .
variance — Q bias — ¥
n m
Optimal allocation:
n* = Ck?/3
minimize MSE 1
rE,m B = m* = €k1/3
subjectto nm =k
MSE oc k—2/3
Gordy and Juneja (2006)
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Optimal MSE Estimator

w1
w?
: Zin
Zi,m
Wn
} } } Time t
0 T T

Optimal allocation: n* = Ck?/3, m* = %kl/?’, MSE oc k—2/3
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Optimal MSE Estimator

w1
w?2
21 1
Zi,m
Wn
} } } Time t
0 T T

Optimal allocation: n* = Ck?/3, m* = %kl/?’, MSE oc k—2/3

Observations:
e Similar expressions for VAR and CVAR, different constants
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Optimal MSE Estimator

w1
w?2
21 1
Zi,m
Wn
1 1 } Time t
0 T T

Optimal allocation: n* = Ck?/3, m* = %kl/?’, MSE oc k—2/3

Observations:
e Similar expressions for VAR and CVAR, different constants
e Not clear how to implement! Need to estimate the constant C
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Optimal MSE Estimator

w1
w?2
21 1
Zi,m
Wn
1 1 } Time t
0 T T

Optimal allocation: n* = Ck?/3, m* = %kl/?’, MSE oc k—2/3

Observations:
e Similar expressions for VAR and CVAR, different constants
e Not clear how to implement! Need to estimate the constant C

e Can we do better?
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Non-Uniform Sampling

w1
w2
: Zi1 Idea: use a non-uniform number
W < ; of stage 2 samples
. ZAi,ImL-
Wn m; = number of samples at w;
} } } Time t
0 T T
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Non-Uniform Sampling

w1
w2

of stage 2 samples

: Zi1 Idea: use a non-uniform number
. Zi,mi

Wn m; = number of samples at w;
} } } Time t
0 T T
Probability
1
1
|
I n
1
1
1 ~
! &= Z Lif=cy
i=1
Loss
C
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Non-Uniform Sampling

w1
w2
: Zi1 Idea: use a non-uniform number
W < : of stage 2 samples
. Zi,mi
Wn m; = number of samples at w;
} } } Time t
0 T T
Probability
1
1
|
I n
1
1
1 ~
; &= > e}
i=1
$ Loss
L(wy) c
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Non-Uniform Sampling

w1
w2
: Zi1 Idea: use a non-uniform number
W < ; of stage 2 samples
. ZAi,ImL-
Wn m; = number of samples at w;
} } } Time t
0 T T

Probability

Loss

L(w1) ¢
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Non-Uniform Sampling

w1
w2
: Zi1 Idea: use a non-uniform number
W < ; of stage 2 samples
. ZAi,ImL-
Wn m; = number of samples at w;
} } } Time t
0 T T

Probability

Loss

L(w1) ¢

set m1 small
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Non-Uniform Sampling

w1
w2
: Zi1 Idea: use a non-uniform number
W < ; of stage 2 samples
. ZAi,ImL-
Wn m; = number of samples at w;
} } } Time t
0 T T

Probability

Loss

L(wy) ¢ L(w2)

set m1 small
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Non-Uniform Sampling

w1
w2
: Zi1 Idea: use a non-uniform number
w; < : of stage 2 samples
. Zi,mi
Wn m; = number of samples at w;
} } } Time t
0 T T

Probability

I
I
1
1
' setmp large
r_M

Loss

L(wy) ¢ L(w2)

set m1 small
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Stage 2 Algorithm

Probability
1
: . 1 ™
: Li=_— 2. Zij
| o=
1
| n
.1
Loss x = n z I{LZC}
C i=1
Idea:

e Sequentially add stage 2 samples
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Stage 2 Algorithm

Probability
1
: . 1 ™
| Li=_~ > Zij
| i
1
| n
. 1
Loss x = n z I{LZC}
C i=1
Idea:

e Sequentially add stage 2 samples

e Add the next sample where it will most affect the estimate &
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Stage 2 Algorithm

Probability
1
: . 1 ™
| Li=_~ > Zij
| i
1
| n
. 1
= Loss x = n z I{LZC}
c i i=1
1
Idea:

e Sequentially add stage 2 samples

e Add the next sample where it will most affect the estimate &
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Stage 2 Algorithm

Probability
- 1 ~
Li=— > 7i;
! m; J; b
1 n
&=—>1yg
n l:zl {Lizc}

add 1 sample

Idea:
e Sequentially add stage 2 samples

e Add the next sample where it will most affect the estimate &
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Stage 2 Algorithm

Probability
. 1 &
Ll = — Z Zl,]
m;i i=1
. 1g
& = Py l:zl l{ilzc}

add 1 sample

Idea:
e Sequentially add stage 2 samples
e Add the next sample where it will most affect the estimate &

e Use a normal approximation: given one more sample at wjy,

A mi |-
P (estimate & changes) =~ & (_701 ‘Li - D
2
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Non-Uniform Stage 2 Algorithm

w1
w?2
21 1
: Zijm,
Wn
} } } Time t
0 T T

e Simulate w1q,...,wxy
e For each ¥ from 1 to k:

Pick i* € argmin % )I:i - c| , Add 1 sample at wjx
i 2

e Estimate probability of loss

n
z {Li=c}

3\'—‘
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Key Result

Under suitable assumptions,

1 1
bias oc — (vs. bias occ — under uniform sampling)
m m
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Key Result

Under suitable assumptions,

1 1
bias oc — (vs. bias occ — under uniform sampling)
m m

Proof Technique:
For a given wj, consider the sequential hypothesis testing
problem:

e Observe IID samples Z;1,Z;,... with L(w;) = E[Z;]
e Hypotheses:
Ho(wj) = {L(w;) < c}

Hi(w;) = {L(w;) = c}

e We wish to determine which hypothesis is true, with a
minimal number of observations

Our non-uniform sampling algorithm is solving many sequential
hypothesis testing problems simultaneously
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Rate of Convergence

e Uniform algorithm:

* 2/3
minimize  MSE n* ok

n,m = m* oc k1/3

subjectto nm =k MSE oc k—2/3
¢ Non-uniform algorithm:

4/5

minimize  MSE n* oc kt

n,m = m* o k1/5
subjectto nm =k MSE o k—4/5
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Gaussian Example

w1
w?
21 1
. Zi,mi
Wn
} } } Time t
0 T T

e First stage: L(w;) = w;, where w; ~ N (0, 0?)
e Second stage: Z; ; = w; + €; j, where €; j ~ N(0O, 022)

e Probability of loss: P(L > ¢) = ®(—c/o1)
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Number of Inner Stage Samples versus Loss

—— sequential
--- uniform

104

103

c=2.326— .

Number of inner stage samples m;

10% £ ! ! ! ! ! ! ! B

Loss L(w;)
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Bias versus Number of Inner Stage Samples

100 —~_— T —TT 1
P~ N oc k1 i

1071 | -
1072 | =

© g oc k2 g
[aa] B |
1073 =

- —e— sequential ]

1074 F —— uniform -

C Ly | N

10° 108
Total number of inner stage samples k
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Numerical Results: Gaussian Example

o1=1, 02 =5, x=0.1%, k =4,000,000

n m MSE Rel MSE
n=m=vk 2,000 2,000 5.7-1077 23
n=k%3, m=kl/3 25,200 159 1.2-107 48
uniform (optimal constant) 7,788 514 2.5-10°7 10
adaptive 30,628 132 3.6-10°8 1.5
optimal sequential 56,686 71 2.5-10°8 1
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Put Option Example

w1
w?
211
w < :
. ZAi,ml
wWn
1 | | Time t
0 T T

e Stock price: S¢(w) & SpeH-0°/2T+oVTw

L(w) =Xy—E [e*”T*T) max (K — St(w, W), 0) ( w] where

St(w, W) 2 ST(w)e(T—O'Z/Z)(T—T)+O'\/T—TW

and
ZAi,j =X — e "T"T max (K - St(wy, Wi,j),()) ,

e Quter stage: the real-world distribution (u)
® Inner stage: risk-neutral distribution (r)
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Numerical Results: Put Option

So =100, K =95, 0 =20%, T =1/52, T =0.25
x = 0.1%, k = 4,000,000

n m MSE Rel MSE
n=m-=vk 2,000 2,000 5.6-10°7 12
n=k%3, m=kl/3 25,200 159 8.2-10°6 175
uniform (optimal constant) 2,570 1,556 4.8-10°7 10
adaptive 14,384 284 9.2:10°8 2
optimal sequential 26,508 151 4.7-1078 1
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e Nested simulation can provide a more realistic assessment of
risk

e Reduced computational burden by

¢ Non-uniform inner sampling to reduce bias
¢ More outer sampling to reduce variance

e MSE reduced by factors from 4 to over 100
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