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American options in Lévy models

American options in the Black-Scholes-Merton model:
Broadie and Detemple (1996)

@ Lévy models: fit empirical financial data better, explain
volatility smiles

e Bermudan options (discrete American): can be exercised at
any time in a discrete set

@ American options: increasing monitoring frequency

o Path dependent options: Bermudan knock-out barrier,
lookback options

Liming Feng Pricing Bermudan options in Lévy process models



Optimal stopping and backward induction

o Discrete optimal stopping (for Bermudan puts)

VO(So) = sup Efe™""(K — S-)']

where S; = Spe*t Xt a Lévy process, 7: stopping time that
takes value in {0, A -, NA}

e Change of variable X; = In(5;/K), x = In(5§/K)
e Backward induction

N (x) = g(x) = K(1—e)*

fj(X) = max(g(x), e—l’AEjA7X[fJ‘+1(X(j+1)A)]
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o Need to compute Eja [T (X(j41)a)]

o Longstaff & Schwartz (2001): least square monte carlo

e Broadie & Yamamoto (2005): double exponential fast
Gauss transform

e Fang & Oosterlee (2008): Fourier cosine series expansion of
the transition density

o Kellezi & Webber (2004): lattice approximation of the
transition density

e Jackson, Jaimungal & Surkov (2008): conditional expectation
is a convolution, its Fourier transform is a product; f+1 —
FT of f/*1 — multiplied by c.f. — FI representation of the
conditional expectation — take max — f/ — FT of f/
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Hilbert transform method

e Hilbert transform of f ¢ L}(R)

Hf(x) = % p.v. /OO fly) d

—c0 XY

o For any f € L1(R) with f € L1(R) (f: Fourier transform of f)

F(L(1,00) - (&) = ( )+ 26’5'H( e~ F(n))(€)
e Bermudan put: 3x7 < K (SOeXf* early exercise boundary)

fj(x) = g(X)'l(—oo,x,*] (X)+e_rAEjA,X[fj+1(X(j+1)A)] 'l(xj*,oo) (X)

J
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Integrability and Esscher transform

o Exponential dampening for integrability: for certain o > 0

J(x) = e (x) € LY(R)

(6
o Esscher transform: Radon-Nikodym derivative

dpe a .
W‘}} =7, = e %t /¢y (icx)
where ¢;: characteristic function of X;

e By [ (Xsnya)l = da(ia)Efp [ (Xs)a)]

@ Esscher transformed Lévy process is still a Lévy process with

c.f. ¢2(8) = ¢e(§ + i)/ ¢e(ic)
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Backward induction in Fourier space

@ From convolution theorem, Fourier transform of
B ol Xgall = [ A 0IPRG—dy is HE0R(-0)

@ Backward induction in Fourier space

FN(E) = 8a(€)

H(E) = Flen - 11 aon)(©) + e (1%‘“(5)%(—5 1 ia)

i 2
LU R () + ia))(€)>

£90x) = max(ga(x). 5re ™ [ eTEon (¢ + ia)de)
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Early exercise boundary

e Early exercise boundary xj“ solves

ga(x) = e "B pa(ia)EfA ([ (X(11)a)]
o Fourier inverse representation

1

£a(x) = 5-e [ T Ooa (- + ia)de

@ To solve for xj‘, use root finding solver (e.g.,
Newton-Raphson), with starting point X' ; (xy = K)
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Discrete approximation

o Discrete Hilbert transform with step size h > 0

Hpf(x) = Z f(m cc>(s)£ﬂ_(xm;)7:)/h]’ xeR

m=—0o0
e For f analytic in a horizontal strip {z € C : |S3(2)| < d}

Cefﬂ'd/h
nd(1 — e~md/h)

@ Fourier inverse integrals: trapezoidal rule

Ce—27d/h
x)dx — Z f(kh)h| < 77

m=—0o0
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Error estimate

e Discretization error ~ O(exp(—mnd/h)

@ Truncate infinite sums with truncation level M. With
de(&) ~ exp(—ct|£]”), truncation error is essentially

O(exp(—Ac(Mh)"))

@ Select h = h(M) according to

e Total error: O(exp(—C/\/IHLu))
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FFT and computational cost

@ Evaluate

M

HF(E) <= Y f(mh)

m=—M

1 — cos[r(& — mh)/h]
m(§ — mh)/h

foré =—Mh,--- ,Mh

Corresponds to Toeplitz matrix vector multiplication

FFT based method for such multiplications: O(M log(M))
Fourier inverse integrals: O(M)

Total computational cost of the method: O(NM log(M))
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Bermudan put in the NIG model
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Figure: T =1,N=252,5, = 100, K = 100, r = 5%, g = 2%, anic =

15, Bnic = =5, dnic = 0.5, Matlab R2009a, Lenovo T400 Laptop with
2.53GHz CPU, 2G RAM; average number of NR iterations per time step
4.08
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Bermudan barrier/lookback options

@ Bermudan barrier options

A (x) = 1(1.u)(x) - (g(X) (oo (%)

J

+e PEjax[F T (X1a)l - I(Xj"oo)(x))

e Bermudan floating strike lookback options: standard
backward induction involves two state variables: asset price,
maximum asset price

@ Can be reduced to one state variable, maximum asset
price/asset price

fj()/) = max(e’ — 1, e*qAEjAJ[le(eYuH)A)])
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Bermudan down-and-out put in Kou's model
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Figure: T =1,N=2525, =100, K = 100,L = 80,r = 5%, q = 2%,0 =
0.1,A=3,p=0.3,m71 = 40,1, = 12, Matlab R2009a, Lenovo T400
Laptop with 2.53GHz CPU, 2G RAM

Liming Feng Pricing Bermudan options in Lévy process models



American options

@ O(1/N) convergence of Bermudan options to American
options in BSM (Howison (2007))

@ Richardson extrapolation: from two approximations P; with
N1 and P> with N>

b NiPL— NP
* N1 — N

N B-VP in NIG | B-VP in BSM Extrap
5 6.411 6.58462398

10 6.451 6.62146556 6.65831
20 6.471 6.64073760 6.66001
40 6.481 6.65061811 6.66050
80 6.486 6.65562807 6.66064
160 6.489 6.65815199 6.66068
320 6.490 6.65941858 6.66069
640 6.491 6.66005274 6.66069

Table: American vanilla puts in the NIG model and BSM model.
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Hilbert transform method for pricing Bermudan style options
in Lévy process models

@ Accurate with exponentially decaying errors
e Fast with computational cost O(NM log(M))
o Early exercise boundary also obtained

°

American options valuation
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