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1. Introduction and Heston Model for Stochastic
Volatility.

1.1 Heston Model for Stochastic Volatility:
The stochastic–variance is modeled with the often used Heston (1993)
mean–reverting stochastic–variance V (t) and square–root diffusion from√

V (t), with a triplet of parameters {κv(t), θ(t), σv(t)}:

dV (t)=κv(t) (θv(t)−V (t)) dt+σv(t)
√

V (t)dWv(t), (1)

with V (0)=V0 >0, where
• Log–rate: κv(t)>0;
• Reversion–level: θv(t)>0;
• Volatility of variance (volatility of volatility): σv(t)>0;
• Standard Brownian motion for V (t): Wv(t).

Equation (1) comprises the underlying stochastic–volatility (SV) model,
which will be called the Heston model here, but often the term Heston
model applies to the system of underlying and its stochastic–volatility.
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1.2 Heston Model Background:
The mean–reverting, square–root–diffusion, stochastic–volatility model
of Heston (1993) is frequently used. Heston’s model derives from the CIR
model of Cox, Ingersoll and Ross (1985b) for interest rates. The CIR
paper also cites earlier and seminal work of Feller (1951), including
proper (Feller) boundary conditions, process nonnegativity and the
distribution for the general square-root diffusions.

Andersen, Benzoni and Lund (2002), as well as others, have statistically
confirmed the importance of both stochastic–volatility and jumps in
equity returns. Bates (1996) used stochastic-volatility, jump-diffusion
models for exchange rates.
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1.3 Simulations for Heston and Related Models:
Higham and Mao (2005) have established strong convergence and other
results for the Euler–Maruyama discretization of several versions of the
mean–reverting, square–root model.

Also, Lord, Koekkoek and Dijk (2007) carry out extensive comparisons
of a number of Euler discretization models of the more general CEV
(constant elasticity of volatility) models to force nonnegativity.

See these papers for other sources.
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1.4 Singular Diffusion Complications:
The Heston model (1993) of stochastic–volatility is a square–root
diffusion model for the stochastic–variance. According to Feller(1951)
the model is a singular diffusion for the distribution. Unlike a regular
diffusion, there is a constrained relationship between the limit that the
variance goes to zero and the limit that time–step goes to zero, so that any
nontrivial transformation of the Heston model leads to a transformed
diffusion in the Itô stochastic calculus.

Due to the square–root term, the singular nature of the diffusion is
intrinsic. Geometric Brownian motion is nominally a singular diffusion,
since the diffusion vanishes when the diffusion coefficient vanishes.
However, by the well–known logarithmic transformation the singular
nature of geometric Brownian motion in the state is removable, resulting
in additive Brownian motion, but singular in volatility. In general,
singular diffusions can be sensitive to slight changes in the model, e.g.,
Hanson and Wazwaz (1988).
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1.5 Hints at Stochastic Calculus Problems:
However, here we are interested in the properties of the Heston model
alone, in simple methods of revealing its non-negativity and the
consistency of the Itô diffusion approximation under transformation of the
stochastic variance when the stochastic–variance can be small. As
Jäckel (2005) states regarding the Heston variance process model:

In an infinitesimal neighbourhood of zero, Itô’s lemma cannot
be applied to the variance process. The transformation of the
variance process to a volatility formulation results in a
structurally different process!

Similarly, Lord et al. (2008) briefly follows up on Jäckel’s warning.

Their comments suggest that a more thorough investigation of the
problem is merited.
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2. Verification of Nonnegativity of Stochastic
Variance by Transformation to Perfect-square
Form:
• Feller (1951) showed long ago that the continuos-time square-root

diffusion had a nonnegative solution, i.e., V (t) using very elaborate
Laplace transform techniques on the classical Kolmogorov forward
equation for the distribution. Also, in the time-independent form
notation here, positivity and uniqueness of the distribution is assured
if κvθv/σ2

v >1/2 with zero boundary conditions in value and flux
at v = 0, while if 0<κvθv/σ2

v <1/2 then only positivity can be
assured for the distribution is the flux vanishes at v=V (t)=0.

• However, various simulations using the Euler-Maruyama
discretization of the Heston stochastic-volatility model can produce
negative values of some V (ti).

• One objective here is to confirm nonnegativity by straight-forward
stochastic calculus methods.
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2.1. Perfect-Square Solution by Stochastic Calculus
Transformation Techniques:
Using the general transformation techniques in Hanson (2007), let
Y (t)=F (V (t), t). Using Itô’s lemma for truncation to a diffusion
approximation, the following transformed SDE is obtained,

dY (t)=Ft(V (t), t)dt+Fv(V (t), t)dV (t)

+1
2
Fvv(V (t), t)σ2

v(t)V (t)dt,
(2)

to dt–precision. Then a simpler form is sought with
volatility-independent noise term, i.e.,

dY (t)=
(
µ(0)

y (t)+µ(1)
y (t)

√
V (t)

+µ(2)
y (t)

/√
V (t)

)
dt+σy(t)dWv(t),

(3)

with Y (0)=F (V0, 0), where µ(0)
y (t), µ(1)

y (t), µ(2)
y (t) and σy(t) are

time-dependent coefficients to be determined.
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Equating the coefficients of dWv(t) terms between (2) and (3), given
V (t)=v≥0, leads to

Fv(v, t)=
(
σy

σv

)
(t)

1
√

v
, (4)

and then partially integrating (4) yields

F (v, t)=2
(

σy

σv

)
(t)

√
v+c1(t), (5)

which is the desired transformation with a function of integration c1(t).
Additional differentiations of (4) produce

Ft(v, t)=2
(
σy

σv

)′

(t)
√

v + c′
1(t)

and
Fvv(v, t)=−

1

2

(
σy

σv

)
(t)v−3/2.

Terms of order v0dt=dt imply that c′
1(t)=µ(0)

y (t), but this equates
two unknown coefficients, so we set µ(0)

y (t)=0 and c1(t)=0 for
convenience.
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Equating terms of order
√

vdt,

µ(1)(t)=

(
2
(
σy

σv

)′

− κv

(
σy

σv

))
(t) (6)

and for order dt/
√

v,

µ(2)(t)=
(
κvθv−σ2

v/4
)
(t)
(
σy

σv

)
(t). (7)

However, there are more unknown functions than equations, so
µ(1)(t)=0 is set in (6) since that leads to an exact differential for
σy/σv with solution(

σy

σv

)
(t)=

(
σy

σv

)
(0)eκv(t)/2,

where
κv(t)≡

∫ t

0

κv(s)ds.

Heston Model Stochastic Calculus — 11 — Floyd Hanson , UIC



For convenience, we set σy(0)=σv(0). Thus (6) becomes

µ(2)
y (t)=eκv(t)/2 (κvθv − σ2

v/4
)
(t),

completing the coefficient determination.

Assembling these results we form the solution as follows,

Y (t)=2eκv(t)/2√V (t)

from (5), and

dY (t)=eκv(t)/2

((
κvθv−σ2

v/4√
V

)
(t)dt+ (σvdWv)(t)

)
from (3) and inverting for V (t) yields the transparent nonnegativity
result:
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Theorem 1A. Nonnegativity of Variance:

Let V (t) be the solution to the Heston model (1), subject to conditions on
the diffusion approximation truncation (2) to be determined (Theorem
1B), then

V (t)=e−κv(t)
(
Y (t)

2

)2

≥0, (8)

due to the perfect square form, where

Y (t)=2
√

V0+2Ig(t) (9)

and

Ig(t)=0.5
∫ t

0

eκv(s)/2

((
κvθv−σ2

v/4
√

V

)
(s)ds+(σvdWv)(s)

)
. (10)
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This is an implicit form that is singular unless the solutionV (t) is
bounded away from zero, V (t)>0. More generally it is desired that the

solution is such that 1
/√

V (t) is integrable in t as V (t)→0+, so the
singularity will be ignorable in theory.
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3. Model Consistency for Itô Lemma Diffusion
Approximation Truncation Under
Transformation and Limit of Vanishing Variance:
In general, we will assume v is both positive and bounded, i.e.,
0<εv ≤v ≤Bv , where Bv is a realistic rather than theoretical upper
bound. It is necessary to check the consistency of the Itô lemma diffusion
approximation truncation specified in (2) because of the competing
time-variance limits. As the time-increment ∆t→0+ in the mean square
limit for the Itô approximation and as the variance singularity is
approached, V (t)→0+, i.e., εv →0+, difficulties arise. Hence, it no
longer make sense to assume that the state variable V (t) is fixed if a
uniform approximation in ∆t and V (t) is needed for model consistency
and robustness.
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3.1. Partial Derivative Power Rules:
The F (v, t) given in (5) has the form F (v, t)=β0(t)

√
v+c1(t), and

the partial derivatives satisfy the power law

∂kF

∂vk
(v, t)=βk(t)v−(2k−1)/2,

where the coefficient βk(t) satisfies the recursion
βk+1(t)=−(k − 0.5)βk(t) when k≥0 with β1(t)=(σy/σv)(t).
Hence, the partial derivatives will be bounded as long as v is positive.
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3.2. Taylor Series Expansion:
For ∆t�1, the corresponding increment in F will be expandable as a
Taylor series depending on the relative sizes of ∆t and v=V (t), as

∆F (V (t), t)=F (V (t)+∆V (t), t+∆t)−F (V (t), t)

=∂F
∂v

∆V (t)+ ∂F
∂t

∆t+ 1
2!

∂2F
∂v2 (∆V )2(t)

+ ∂2F
∂v∂t

∆V (t)∆t+ 1
2!

∂2F
∂t2

(∆t)2

+ 1
3!

∂3F
∂v3 (∆V )3(t)+ 1

2!
∂3F

∂v2∂t
(∆V )2(t)∆t

+ 1
2!

∂3F
∂v∂t2

∆V (t)(∆t)2+ 1
3!

∂3F
∂t3

(∆t)3

+ · · · .
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3.3. Estimation of Dominant Terms:
If ∆t�1 with conditioning the current variance on v, letting
µv(t)=κv(t)(θv(t)−v) and ∆Wv(t)=

√
∆tZv(t) with standard

normal Zv(t)
dist= N (0, 1), then

[∆V (t)|V (t)=v] ' σv(t)
√

v∆tZv(t)+µv(t)∆t.

In terms of small ∆t when k>1, the pure variance derivatives, i.e., those
having only v-derivatives, will dominate the cross variance-time
derivatives, the mixed v and t derivatives, as well as the pure time
derivatives, since for ∆t�1 then ∆t�

√
∆t�1, while considering v

fixed. Thus for k>1, only the powers of diffusion part of
[∆V (t)|V (t)=v] need be considered. The mean estimate of the
absolute value of dominant diffusion power is

E
[
|σv(t)

√
v∆Wv|k

∣∣V (t)=v
]
=αk(t)(v∆t)k/2,

where αk(t)=σk
v(t)E[Zk

v (t)].
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Estimates of the products of these terms produce are,˛̨̨̨
∂kF

∂vk
(v, t)

˛̨̨̨
E[(σv(t)

√
v∆Wv)k]=γk(t)

∆t√
v

„
∆t

v

«
(k−2)/2

≤γk(t)
∆t√
εv

„
∆t

εv

«
(k−2)/2,

for γk(t)=αk(t)|βk(t)|, separated into the order ∆t/
√

v of the Itô
diffusion approximation (k=2) term and the factor relative to it. Hence,
to eliminate all terms of higher order than k=2, we need ∆t/v�1,
i.e., ∆t �εv �1 to obtain a proper Itô diffusion approximation (2) for
the transformation Y (t)=F (V (t), t) in (5). Summarizing:

Theorem 1B. Conditions for a Consistent Itô Lemma Diffusion
Approximation Truncation for Transforming the Heston Model (1) to
one of Additive Noise: Let V (t) be positive and finite such that
0 <εv ≤V (t)≤Bv , then the additive noise model (2) is a consistent
Itô diffusion approximation to the Heston model (1) uniform for ∆t�1
and εv �1, provided ∆t�εv �1.
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4. Solution Consistency for Singular Limit
Formulation Suitable for Theory and
Computation:
However, as V (t)→0+, it is necessary to verify that the solution (11)
satisfies the Heston model (1) in the limit, due to the questions involving
the validity of the Itô lemma and the singular integral Ig(t) in (10).a

First recall that from (8)–(10)

V (t)=e−κv(t)
(√

V0+Ig(t)
)2

. (11)

Modifying the method of ignoring the singularity (Davis and
Rabinowitz, 1965) to this implicit singular formulation, let

V (εv)(t)≡max(V (t), εv) (12)

where εv >0 such that ∆t�εv �1. This ensures that the time–step
goes to zero faster than the cutoff singular denominator.

aRecall that Zabusky and Kruskal (1965) showed that the well-known discretization of
the Fermi-Pasta-Ulam problem numerically solved the Korteweg-deVries problem instead.
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Next (11)–(10) is reformulated as a recursion for the next time increment
∆t, i.e.,

V (εv)(t + ∆t)=max
(
e−∆κv(t)

(√
V (εv)(t)

+e−κv(t)/2∆I(εv)
g (t)

)2
, εv

)
,

(13)

where

∆κv(t)≡
∫ t+∆t

t

κv(s)ds → κv(t)∆t as ∆t → 0+.

Similarly, a scaled increment of an integral is defined by

e−κv(t)/2∆I
(εv)
g (t)≡0.5

Z t+∆t

t

e(κv(s) − κv(t))/2  
κvθv − σ2

v/4√
V (εv)

!
(s)ds+(σvdWv)(s)

!

→ 0.5

  
κvθv − σ2

v/4√
V

!
(t)∆t+(σv∆Wv)(t)

!
,

such that ∆t/εv → 0+ as ∆t → 0+ & εv → 0+.
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An Itô–Taylor expansion to precision dt or small ∆t confirms that
(13)–(14) yields the Heston (1993) model, verifying solution
consistency.

Thus, the square in (13) formally justifies the nonnegativity of the
variance and the volatility of the Heston (1993) model, for a proper
computational nonnegativity–preserving procedure.
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5. Nonsingular, Explicit, Exact Solution:
In any event, the singular term in (11)–(10) vanishes in the special
parameter case, such that

κv(t)θv(t)=σ2
v(t)/4, ∀ t. (14)

Hence, we obtain a nonnegative, nonsingular exact solution

V (t)=e−κv(t)
(√

V0+0.5
∫ t

0

eκv(s)/2(σvdWv)(s)
)2

, (15)

with the recursive numerical form corresponding to the εv-truncated
forms (13)–(14),

V (εv)(t+∆t)=max

 
e−∆κv(t)

 q
V (εv)(t)

+
1

2

Z t+∆t

t

e(κv(s) − κv(t))/2

·(σvdWv)(s)

!2

, εv

!
,

(16)

which is useful for testing simulation algorithms.
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6. Alternate Solution Relative to Deterministic
Solution Using Integrating Factor
Transformation:
Similarly, the chain rule for the linear integrating factor form

X(t)=exp(κv(t))V (t) (17)

for the general stochastic–volatility (1) leads to a somewhat simpler
integrated form,

V (t)=V (det)(t)+e−κv(t)
∫ t

0

eκv(s)
(
σv

√
V dWv

)
(s), (18)

suppressing the maximum with respect to zero, where

V (det)(t)=e−κv(t)
(
V0+

∫ t

0

θv(s)d
(
eκv(s)

))
(19)

is the deterministic part of V (t).
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So the deterministic part is easily separated out from the square-root
dependence and replaces the mean-reverting drift term. The V (det)(t)
will be positive for positive parameters. For simulation purposes, the
incremental recursion is useful,

V (det)(t+∆t)=e−∆κv(t)
(
V (det)(t)

+e−κv(t)
∫ t+∆t

t

(
θvd

(
eκv

))
(s)

)
,

(20)

yielding

V (t+∆t)=e−∆κv(t)
(
V (t)+e−κv(t)

∫ t+∆t

t

eκv(s)

·
(
κvθv+σv

√
V dWv

)
(s)

)
.

(21)
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Note that with constant coefficients, θv(t)=θ0, κv(t)=κ0 and
σv(t)=σ0, then (19–21) become

V (det)(t)=V0e−κ0t+θ0

(
1 − e−κ0t

)
, (22)

V (det)(t+∆t)=θ0+e−κ0∆t
(
V (det)(t)−θ0

)
, (23)

and

V (t+∆t)=θ0+e−κ0∆t
(
V (t)−θ0+σ0

√
V (t)∆W (t)

)
. (24)

However, as Lord et al. (2008) point out, a sufficiently accurate
simulation scheme and a large number of simulation nodes are required
so that the right-hand side of (1) generates nonnegative values. Otherwise,
V (t) = max(V (t), εv) can be used.
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7. Selected Numerical Simulations:
In Figure 1, the simulations for the Euler approximation to Heston’s
stochastic–variance equation (1), truncating any negative values to zero,
compared to the perfect square solution simulations in (13) using εv =0.
The parameter values used are {κv =2.00, θv =0.01, σv =0.25}, or
the exact parameter ratio κvθv/σ2

v =0.25.

The number of negative values Kneq before truncation are plotted in
Figure 2 against the Heston model parameter ratio κvθv/σ2

v .

Heston Model Stochastic Calculus — 27 — Floyd Hanson , UIC



0 2 4 6 8 10!0.02

0

0.02

0.04

0.06

0.08

0.1

0.12
Stochastic Volatility and Square Simulations

V(
t),

 S
to

ch
as

tic
 V

ar
ia

nc
e

t, Time
 

 

VeulerHs(t), State 3
VexactSq(t), State 3
!25*Verr12(t)
Vdeterministic
V(0) = V0
!v(t)

Zero

Figure 1: Comparison of Heston-Euler simulation of VeulerHs (1) with εv =

0 and the perfect square solution VexactSq (13), barely distinguishable with the
maximum error 2.46e-3 of Verr12(t), magnified 25 times. Also shown are the
deterministic solution (20). The Heston model parameter ratio is κvθv/σ2

v =

0.25, N =106 sample points and Kneq =76 prior to truncation.
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Figure 2: Nonpositive variance counts for the Heston Euler and Alternate
solution simulations, counted prior to truncation to zero. The coordinate
axis is the Heston model parameter ratio κvθv/σ2

v , where κv = 2. and
θv =0.01, while σv ∈ [0.2, 0.3].
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8. Conclusions:
• Derived a transformation of the Heston stochastic volatility V (t)

square-root noise model to a additive noise model, leading to a
perfect-square, nonnegative model for V (t);

• Derived the Itô lemma consistency conditions in the time-step ∆t

and lower bound εv = min[V (t)] to uniformly ensure truncation to
a diffusion for the transformed model;

• Confirmed that the transformed, truncated model formal solution
reduces back to the Heston model in the joint small ∆t and εv

limit.
• Specified the special case of Heston parmeters with an explicit,

nonsingular, exact solution.
• Produced another transformed solution that separates out the

deterministic solution.
• Showed numerical simulations compared and the dependence of the

spurious nonpositive counts on the Heston parameter ratio.
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