Correcting the Optimal Stopping
Bias in Monte Carlo Evaluation of

Early Exercise Options

Tyson Whitehead, Matt Davison, and Mark
Reesor

SHARCNet/UWO
Bachelier Finance Society, Sat June 26 2010



Optimal Stopping

Let k take on the values 1,..., NV for a given /V. Assume there is
1. a probability space (2, F, P),
2. anon-decreasing sequence of sub-sigma algebras F; C F, and
3. asequence of random variables (RVs) P, such that each Py, is Fj-measurabl

The discrete, finite-time-horizon, optimal-stopping problem is to determine

sup E [PT] (1

T€T

vhere 7 is the class of all RVs 2 — [1,..., V] such that the event [T = k| € F;
i.e., the class of all stopping times 2 — [1,..., V]).



Equivalently

Hy, = E|Bji1||Fi), | 2
By = max(Hy, Py), | ' (3)

where By = Py and E[B;] = sup,.; E|[FP/].



Tree notation

Depth N, branching factor M
Specify tree by choice at each node:

i = (ig,1,,i3,i,)
Can specify node location by i and depth k



Tree estimates (high biased)
Hllc = E[Bllc-l-l”fk]a B}\I — PJi\I
B} = max( L P,

;M
HIIJM:"M Z Bk+1M:

ip41=1
~ . i
B,y = = max(Hy, Pp),
Sit
where By 3 = Py



Bias Correction

Let H, = E[H;5,||F%]. A node of the high-biased stochastic tree at the &'
stopping opportunity has a bias of H;",, — Hi = E[B;", — Bl || F%]. Expandin;

the inner terms gives
E[max(ﬁliil,Mv Peyy) — max(Hy,,, Pfi+1)“-7:k]-

Adding and subtracting E[max(H,", ,,, PL,)||Fx] splits this expression into .
local (Equation 11) and a global (Equation 12) component:

E[maX(g]iﬁil,M, P,iﬂ) - max(ﬁ,ij‘rl’M, P,iﬂ)”}“k] iu (o B (11

+ B[max(H, oy, Bhyy) — max(Hbyy, PL)lIF- glis) (12



Held: Exercised:
Ykl+1M>0 YlsilM<O
Should Hold: ~ it
0 —Y,
Ykl-l-l m >0 LM
Should Exercise: -
YA»,+1,M 0

ch+1 M

<0




Expectation of Table

E]].—i ]]."i* ——~i+* . i
[ Vit >0 Ykil_MSO( Yilim) + ﬂY;jl,Mgol?,jj;;'Mw(Yklil,M)”fk], (17)

/""/’/‘,g*, L (T8, I
¢ s JD VE/M \/W Y’;il,M’Vl;il,M”fk(y’v) y"dy do,

where D = (0,00) x (~oc,0] U (—00,0] x (0,00) and & is the normal d-ensity.



Substituting z = yVM

/w//lz*[i_qb ik VN 2
0 D VT Vi e Vel F v M



Replace z with z* for one integration

00 00 .
~k "|@/*l e
/0 /_oo‘y l(ﬁ(m It it 2 00) 45 00
which, in expectation form, is

.. __!f/iqt* l
VAR k+1,M
‘k+1,M| ( S

k+1,M/

)

Fil.

(19)




Bias Correction

E[max([fl;iLM,P,iH) —~max(ﬁ;ilM,P,i+l ”]-';C] j@ @fa (23)
+E[max(H,ﬁ;1M,P et) ~ max(H,iH,P k1 ”}_ kJ Lj UM (24)
:
1 ‘Hl+ - i
-k lHkil,M“PkH,M' “( k:l_M A,
| U sl

w




Fixing Local Also Fixes Global

Global Stage k error bounded Formula:

* |tis bounded by stage k+1

bias B | o
’E[maX(Hi-lc-iH,M: Ppiq) — max(Hy,, Pé+1)llfk]‘

* Jensen + < BN a0 = Hica I74] = BIEIEC al Fona] = Hiaa 73],
* [max(x,y) — max(u,v)|

< |x-u| + |y-v]
* Final stage bias=0
* So can ignore stage k
* bias



Moments and Bounds

The idea The bound

WP is pth absolute moment
of B

WP is bounded above by UP
Makes sense for U, pre- M Iy

. . . rip _1_ 1 :
visible option value M r 2 M Z _max [P,

ik+1=1 in=1

| BL. i i
clearly higher than Ui = E[Ter[%axN PiP| 7|,
Can also prove forp>1 777 ]



Moment Bounding Lemma

Lemma 2.1 (Bounds). For alli, 1 < p, and k,
1. |PiP <y UpP
2. |H{P <y Up® and [HL, 1P < )Y,
3. |Bi|P <, U and IB;TMP" < (7,;73,1, and

4. |\ViP <q UYP and |V [P < (M/(M — 1))PT>2,
k k k,M k.M



Bounds Consistency Lemma

Lemma 2.2 (Bounds consistency). For alli, 1 < q < p, k, and G C F,, if
UP < oo, then

1. U 1:;3\/1 and U ,i’q are integrable,
=, i M i i
2. Uy =1 Uy and 1/M 2 iy=1 Uiy —1 B[US?||Fy-1], and

E[U:3,16] =1 E[U]|G].



Estimator Consistency Lemma

Iheorem 2.3 (Estimator consistency). Foralli, 2 < p, k, and G C F, if UP -

>0, then®

1. Pi, Hi, B, Vi, H,, Bity and Vit are integrable,
~ . . ~ 4 ' o~ -+ -

3. B(HE,G) =1 EHLG) BB IG] —1 BIBLIG) and B[V, [IG] —
E[V;1G]



Moment Consistency Lemma

Lemma 2.4 (Moment consistency). Foralli, 1 < ¢ < p, k, and G C Fr, if
UP < o0, then

it .
1. W, is integrable,

2. Wil =1 W, and

3. E[WRIG) = EW)g].



Formal Justification

1N s secton, we prove the high-bias corrected estimators have a reduced order

of bias if the fourth moment of the rewards is finite and there is some region

about the stopping boundary for which the sampling density is continuous and the
variance is bound. .. . ..

E[ma'x(HI::j—l M> PI:+1) maX(Hich M> Pli+1)”-7:k]: lﬁ Ce, | (29)
E[ma'x(Hl::—l o Peyr) — maX(Hl::+1: Pk+1)”'7:k] giasﬁ' “(30)

lHk LM~ Bl
-|H bl M Pk+1Ml(I)( +1+ e
| /M

] (a(mf‘(31)
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We will manipulate the local error

The Goal Equivalent Local Bias

* toshow that the local error
term — the bias correction E[]l
term is o(1/M)

* f(M)is o(1/M) means: B
lim ;5 .. Mf(M)=0 ]11/,;11 M<o]1Y,;+1 M>0(Yx:i1,M)||~7:k]v

]]__.

it
Yk+1,M

( Yk:+1 M)

l
Yk+1 m>0



Want to exchange for normal (*)

Theorem 3.3 (Non-uniform Berry-Esseen). If Xi, Xo, ..., Xz are iid RVs with

2. B[l X! =V >0, and

3. E[|X2|3] =W < oo,
then, for some universal constant C,

P[ﬁéxigx}—@(x) 4

VVVM(1+ |z])3

<C




Y*is ‘normal’ version of Y

- Theorem 3.4 (Exchange of Yf, , and Y}i{; ,, in bias). Foralli, k, and G C F,
if
1. U3 < oo,

2. EH?J:II,M - Y,:+1|||g] =, O(1/M), and

3. there is some G-measurable ¢ > 0 such that fykiHu 7. (y) exists for and has

a G-integrable bound on [|y| < €| a.e.,

then the G-conditional-expected absolute difference between Equations 32 and 33
iso(1/M) a.e.
[ cal 2rf0r () upto e C,}/A/; )

E[]]-?Iciil.M>Oﬂl}iji;.M<0(_Yxif'M) + H?QLM<0]1?,:1‘;'M>0(}/EII,M)“}—k] (33)



Local — Correction o(1/M)

* We need to show
 E[|Local—(34)]|]is

o(1/M) E[l?;i*IM‘I’( w5 )“FJ _



It is]

~Theorem 3.5 (Exchange of YT, ;, and VT, ;, for ¥}, and Vi, in difference).
Foralli, k,and G C Fy, if

1. U? < oo,
E[|Y, lc+1 M chi+1“|g] =; o(1/M), and

3. there is some G-measurable € > 0 such that fy; |7, (y) exists for and has

a G-integrable bound on [|y| < €] a.e.,

then the G-conditional expected absolute difference in exchanging Y1+ ToaforYiy

g

i+
and Vi fy p for Vi, in

f_/ki:}i—-l,M/M Y::L M i+ k+1 M
B F i+ i+ |}/k+1 Ml (I) i+
\/VkH,M/M V2Vt /M \/2v Lol M

iso(1/M) a.e.




Separating Scales

Theorem 3.6 (Separation of scales). Foralli, k, and G C Fy, if
1. U3 < o0,
2. E¥it,00 — ViG] =1 o(1/M), and
3. there is some G-measurable ¢ > 0 such that

(a) Vi, has a G-measurable bound on [|[Y}, | < €] a.e,

(b) fyi, 17 (y) exists for and has a G-integrable bound on [|y| < €] a.e.

and is continuous in y about zero, and



Separating Scales Il

I b

(c) ;E Vi I (y,v), f ;%H” £ (), and v, (y) exist such that

E[n|Yg+1[559(Yij+1a V!:+1)l‘-7:k]
[ [ o) 55, e dy o

k+1
+ 3 [ 9w v @) £, )
i —€

for all integrable g(Y,.., Vi) and are continuous in y about zero,

then the G-conditional-expected absolute difference between Equations 33 and 34
iso(1/M) a.e.



Y* Vbar not observable

Equation 34 cannot be used directly as
Yt 11 a is not observable in the context of a simulation. Using Y‘J“1  Instead

gives

J—"kJ , (35)

which still contains the unobservable Vklil - Replacing it wti V,;jl A glves

Yl—i—lM,(I)( k:+1M )!
\/ k+1M

E||

Fk} : (36)




It’s OK to swap Y* and Y

Theorem 3.7 (Exchange of ?,c‘_tl y and f/k‘if u N correction). For all i, k, and

1. U3 < o,
2. BT 00 — Yinlllg] = O(1/M), and

3. there is some G-measurable ¢ > 0 such that fykiH“ 7. (y) exists for and has

a G-integrable bound on [|y| < €] a.e.,

then the G-conditional-expected absolute difference between Equations 34 and 35
is o(1/M) a.e.



It’s OK to swap Vbar for Vtilde

\ |

Theorem 3.8 (Exchange of V't ,, and Vi'f, ,/ in correction). For all i, k, and
G CFpif

1. U* < oo,
2. ElI7 0 — YinlI0] = O(1/M), and

3. there is some G-measurable ¢ > 0 such that fYki_H” 7. (y) exists for and has

a G-integrable bound on [|y| < €] a.e.,

then the G -conditional-expected absolute difference between Equations 35 and 36
iso(1/M) a.e.



The final theorem |

Theorem 3.9 (Order after bias correction). For all i, k, and G C Fy, if
1. U* < oo,
2. B[l v — Yiulllgl =1 o(1/M), and
3. there is some G-measurable ¢ > O such that

(a) Vi, has a G-measurable bound on YL ] < ¢€lae,



The final theorem ||

(b) fyi 17 (y) exists for and has a G-integrable bound on Nyl < € a.e

and is continuous in y about zero, and

ac S5 V] .
(c) 5 Vi, I (y,v), Vi IFe (y), and v} (y) exist such that

k+1:

ElLy;, <e9(Yis1, Vl§+1)||-7'—k]

“1/[ y, y’;H 1||-7'_k(y’v) dy dv

+Zf yvvfk y) y’: 1”_7:'k(y) dy

for all integrable g(Yi,;, Vi, ) and are continuous in y about zero,

then B(|Y, 3, — YilllG] =1 o(1/M).



Some results

The parameters Price vs. Branching Factor
 Max call on 5 uncorrelated $17.00
stocks $16.80 N —High
$16.60
* C(S%,S%,S%,5%,5°,T) = $16.40
max(SlT-Kl,SzT-KZ,S3T-K3, $16.20 - -=-Low
S4T'K4, SST'KS,O) 516.00 J?
$15.80 -/-/' .
* Forall stocks: S;=90, K = $15.60 HighT
100, 6 = 20%, q = 10% $15.40 1/ v
PY N — 3’ T o 3’ r= 5% $15.20 | | | | LowT



Works with more Exercise opps!
Log (time in hours) vs. ExOpp

Price vs Exercise Opps.

(M=10, same parameters)

$18.0
$17.5 /04‘
$17.0
$16.5 // : —
$16.0 /

2

$15.0

$145 | | | | | |

—&— High

=i—Low
HighTy

== owTy

(M=10, same parameters)

10

/

-2-M=20
M=40
-==M-80

)
74




Thanks for listening

* Any Questions?



