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If I were an Innocent Investor...

◮ I just bought a stock and must sell it in one year

◮ Need to decide when to sell?

◮ Obviously, sell it at the maximum price of the whole year.
However, this is an impossible mission.

◮ So, what about selling at the price ”closest” to the maximum?
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◮ Obviously, sell it at the maximum price of the whole year.
However, this is an impossible mission.

◮ So, what about selling at the price ”closest” to the maximum?

◮ This talk is using square error to measure ”closeness” and
studying the optimal selling strategy under this criterion.



The Model

◮ A Black-Scholes market with one stock and one saving
account

◮ The discounted stock price follows, on (Ω,F , {Ft}t≥0, P ),

dSt = µStdt+ σStdWt,

where µ ∈ (−∞,∞) and σ > 0 are constants

◮ Let Ms = max0≤t≤s St, 0 ≤ s ≤ T be the running maximum
of stock price
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◮ The discounted stock price follows, on (Ω,F , {Ft}t≥0, P ),

dSt = µStdt+ σStdWt,

where µ ∈ (−∞,∞) and σ > 0 are constants

◮ Let Ms = max0≤t≤s St, 0 ≤ s ≤ T be the running maximum
of stock price

◮ Consider the following optimal stopping problem

inf
0≤ν≤T

E[(Sν −MT )
2],

where E stands for the expectation, ν is an Ft-stopping time.



Related (Probabilistic) Literature

◮ Graversen, Peskir and Shiryaev (2000), Theory Prob Appl,
studied

inf
0≤ν≤T

E[(S0
ν −M0

T )
2],

where S0
t =Wt, M

0
T = max0≤t≤T Wt and obtained explicit

optimal solution

ν∗ = inf{t :M0
t − S0

t ≥ z∗
√
T − t}, z∗ = 1.12 . . .
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◮ du Toit and Peskir (2007), Ann Prob, considered

inf
0≤ν≤T

E[(Sµν −Mµ
T )

2],

where µ 6= 0.



Related (Financial) Literature

◮ Shiryaev, Xu and Zhou (2008), Quant Fin, studied the relative
error between the selling price and global maximum,

inf
0≤ν≤T

E

[

Sν
MT

]

◮ ”Bang-bang” strategy:

◮ Sell at time T : µ > σ2

2

◮ Sell at time 0 : µ ≤ σ2

2



PDE Formulation

◮ The problem is
inf

0≤ν≤T
E[(Sν −MT )

2]

◮ Not a standard optimal stopping problem, since MT is not
Ft-adapted

◮ One more step:

inf
0≤ν≤T

E[(Sν −MT )
2] = inf

0≤ν≤T
E

{

E[(Sν −MT )
2 | Fν ]

}

= inf
0≤ν≤T

E

{

φ(ν, Sν ,Mν)
}

,

where φ(t, St,Mt) = E[(St −MT )
2 | Ft]



PDE Formulation (Con’t)

◮ Denote the value function

ψ(t, St,Mt) = inf
t≤ν≤T

E

{

φ(ν, Sν ,Mν) | Ft
}

◮ Dynamic programming equation (Variational Inequalities)

{

max{−∂tψ − L0ψ,ψ − φ} = 0, (t, S,M) ∈ D,

∂Mψ(t,M,M) = 0, ψ(T, S,M) = (S −M)2,

where L0 = σ2

2 ∂SS + µ∂S and
D = {(t, S,M) : 0 < S < M, 0 ≤ t < T}.



The Obstacle Function φ(t, S,M)

◮ Recall

φ(t, St,Mt) = E[(St −MT )
2 | Ft]

= S2
t − 2StE[MT | Ft] + E[M2

T | Ft]
=: S2

t − 2Stφ1(t, St,Mt) + φ2(t, St,Mt),

where φi(t, St,Mt) = E[M i
T | Ft].

◮ Then, φi(t, S,M) satisfies

{

−∂tφi − L0φi = 0, (t, S,M) ∈ D,

∂Mφi(t,M,M) = 0, φi(T, S,M) =M i.



Change of Variables

◮ Denote τ = T − t, x = ln M
S
, ui(τ, x) =

φi(t,S,M)
Si ,

u(τ, x) = φ(t,S,M)
S2 .

◮ Then, u1 and u2 satisfy
{

∂τu1 − L1
xu1 = 0 in Ω,

∂xu1(τ, 0) = 0, u1(0, x) = ex,

{

∂τu2 − L2
xu2 = 0 in Ω,

∂xu2(τ, 0) = 0, u2(0, x) = e2x,

where L1
x = σ2

2 ∂xx −
(

µ+ σ2

2

)

∂x + µ,

L2
x = σ2

2 ∂xx −
(

µ+ 3σ2

2

)

∂x + (2µ + σ2),

Ω = (0, T ]× (0,∞).



Change of Variables (con’t)

◮ Denote v(τ, x) = ψ(t,S,M)−φ(t,S,M)
S2

◮ Then, v satisfies

{

max
{

∂τv − L2
xv −H, v

}

= 0 in Ω,

∂xv(τ, 0) = 0, v(0, x) = 0,

where H = L2
xu− ∂τu = 2µ+ σ2 +2

(

σ2∂xu1 − (µ+ σ2)u1

)

,

L2
x = σ2

2 ∂xx −
(

µ+ 3σ2

2

)

∂x + (2µ + σ2).

◮ Define the selling region (the stopping region) as follows:

SR = {(τ, x) ∈ [0,∞) × (0, T ] : v(τ, x) = 0}.



The Optimal Selling Strategy: Good Stock(µ > 0)
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Figure: Two optimal selling boundaries. Parameter values used:
µ = 0.045, σ = 0.3, T = 1.



The Optimal Selling Strategy: Bad Stock (−σ2 ≤ µ ≤ 0)
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Figure: The monotonically increasing optimal selling boundary.
Parameter values used: µ = −0.010, σ = 0.3, T = 1.



The Optimal Selling Strategy: Very Bad Stock (µ < −σ2)
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Figure: The nonmonotone optimal selling boundary. Parameter values
used: µ = −0.032, σ = 0.4, T = 3.



The Proof

◮ Recall
{

max
{

∂τv − L2
xv −H, v

}

= 0 in Ω,

∂xv(τ, 0) = 0, v(0, x) = 0,

◮ So,

SR = {(τ, x) : v = 0}
⊆ {(τ, x) : ∂τ0− L2

x0−H ≤ 0}
= {(τ, x) : H ≥ 0}



The Set {(τ, x) : H ≥ 0}

Lemma: Recall H(τ, x) = 2µ+ σ2 + 2
(

σ2∂xu1 − (µ+ σ2)u1

)

.

◮ If µ ≤ 0, ∂xH > 0;

◮ If µ ≥ −σ2, ∂τH < 0;

◮ If µ > 0, ∂xH(τ, x) = 0 has at most one solution for any give
τ > 0;

-

6
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-
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The Main Results: µ ≤ 0

With the help of previous lemma, we have

◮ ∂xv ≥ 0 if µ ≤ 0;

◮ ∂τv ≤ 0 if µ ≥ −σ2;

◮ These are due to

∂τv −L2
xv = H, in {(τ, x) : v < 0}.
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◮ ∂τv ≤ 0 gives the monotonicity of the free boundary.



The Main Results: µ > 0

◮ With µ > 0, we have ∂τv ≤ 0, which implies that
(τ2, x) ∈ SR, if (τ1, x) ∈ SR and τ2 < τ1.
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The Main Results: µ > 0

◮ With µ > 0, we have ∂τv ≤ 0, which implies that
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The Main Results: µ > 0

◮ With µ > 0, we have ∂τv ≤ 0, which implies that
(τ2, x) ∈ SR, if (τ1, x) ∈ SR and τ2 < τ1.
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The Main Results: µ > 0

◮ The sell region SR is connected;

◮ We can define

x∗1s(τ) = inf{x ∈ [ 0,+∞) : v(τ, x) = 0}
x∗2s(τ) = sup{x ∈ [ 0,+∞) : v(τ, x) = 0}

◮ It is easy to show

SR = {(τ, x) : x∗1s(τ) ≤ x ≤ x∗2s(τ), 0 < τ ≤ τ∗}.

◮ The monotonicity of x∗is(τ) follows by ∂τv ≤ 0.



Smoothness of the Free Boundary

◮ For µ ≥ −σ2, we have ∂τv ≤ 0. So, one can easily establish
the smoothness of x∗s(τ) following Friedman (1975).

◮ First, show x∗s(τ) ∈ C3/4((0, T ])
◮ Then, show x∗s(τ) ∈ C1((0, T ])
◮ By a bootstrap argument, show x∗s(τ) ∈ C∞((0, T ])



Smoothness of the Free Boundary

◮ For µ ≥ −σ2, we have ∂τv ≤ 0. So, one can easily establish
the smoothness of x∗s(τ) following Friedman (1975).

◮ First, show x∗s(τ) ∈ C3/4((0, T ])
◮ Then, show x∗s(τ) ∈ C1((0, T ])
◮ By a bootstrap argument, show x∗s(τ) ∈ C∞((0, T ])

◮ For µ < −σ2, we change of variables. Let y = x− µ/σ2τ ,
and V (τ, y) = v(τ, x).

◮ Show ∂τV (τ, y) ≤ 0 and ∂yV (τ, y) ≥ 0
◮ Apply Friedman (1975) to show smoothness of the

corresponding y∗s (τ), which gives the desired result



Conclusion

◮ We examine the optimal decision to sell a stock with the
criteria of minimizing the square error between the selling
price and the global maximum.

◮ For good stock, i.e. µ > 0, the optimal selling boundary has
two branches and only exists when time to maturity is not
long enough.

◮ For bad stock, i.e. µ ≤ 0, the optimal selling boundary only
has one branch and always exists.

◮ The smoothness of the free boundary is also established.



Thank you !


