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Delta Hedging Strategy (DHS)

@ Risky assets S (with Black-Scholes model)
@ Option to be hedged : u(t,S) :=Eg(e " (T~tg(57)|S: = S)
@ Rebalancing dates : m:={0=ty < ---<t;<---<ty=T}

2/21



Delta Hedging Strategy (DHS)

@ Risky assets S (with Black-Scholes model)
@ Option to be hedged : u(t,S) :=Eg(e " (T~tg(57)|S: = S)
@ Rebalancing dates : m:={0=ty < ---<t;<---<ty=T}

Delta Hedging Strategy (DHS) = hold §;, risky assets between t; et
ti+1 such that :

Portfolio value at time t : VAN(t,S;) = 6950 + 6. S;

dsVAN = gsu = 6§, = Osu(t, ;)

2/21



Delta Hedging Strategy (DHS)

@ Risky assets S (with Black-Scholes model)
@ Option to be hedged : u(t,S) :=Eg(e " (T~tg(57)|S: = S)
@ Rebalancing dates : m:={0=ty < ---<t;<---<ty=T}

Delta Hedging Strategy (DHS) = hold §;, risky assets between t; et
ti+1 such that :

Portfolio value at time t : VAN(t,S;) = 6950 + 6. S;
dsVAN = gsu = 6§, = Osu(t, ;)

The (discounted) Delta tracking error
Ep = e (Ve — g(57))

_ N-1 it _
=Y / (6s, — 0,)dS:.
i=0 /i
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Effect of the payoff function smoothness

» In Gobet and Temam (2001) : (with uniform time net)
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Effect of the payoff function smoothness

» In Geiss (2002) and Gobet and Makhlouf (2008) :
generalization :

e Forgels,, ac(0,1],

_1
@ Moreover, one can reach the order N™2 thanks to a
convenient choice of a non regular time net.

» Both the payoff function regularity and the time net choice have
an effect on the convergence order of the Delta hedging error.
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The Delta-Gamma Hedging Strategy (DGHS)

» The Delta-Gamma Hedging Strategy (DGHS) = hold, between t;
and tjy1, 0, risky assets S and (35 of another instrument whose
price is (C(t, S¢))o<t<7 : (in dim 1)

VALN(¢ S,) = 6950 + 6,5, + 6E C(t, St)
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» The Delta-Gamma Hedging Strategy (DGHS) = hold, between t;
and tjy1, 0, risky assets S and (55 of another instrument whose

price is (C(t, S¢))o<t<7 : (in dim 1)

VALN(¢ S,) = 6950 + 6,5, + 6E C(t, St)

» 0sVALN = 9su and 92VATN = 92y yield (in dim 1)

. 8§U(t,', St’-)
B 92C(t;,St,)’

8§U(t,‘, St’.)

6 -2
i 0z C(ti, Sy;)

5t,- = 85u(t;,5t,.) 85C(t,',5t'.).
» Our goal : study, in dimension d,
o the link between the order of 4T and the payoff regularity

o the effect of the rebalancing dates choice
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Framework

@ Assets
S =5
ds! = p;Sldt + o;SLAW!,
o W = (W!,.. WY)is a Brownian motion under the historical
probability P.
° (Wf, VAVk>t = pj kt, and the matrix (pj x)1<j k<d has full rank.

@ Risk-neutral probability Q :

0 )\ =41
aj

o (W := W/ + \jt)i<j<q is a Q-Brownian motion
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@ Hedging instruments : for 0 < j < k < d,
Chk(t, s/, SK) =
Eq [e (Te-0(Sk, — K;4ST,) 4151 = 51, SF = S|,
(— closed BS and Margrabe formulas).
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@ Hedging instruments : for 0 <j < k < d,
Chk(t, S, 5%) =
Bo [e~(T20(Sk, — K;4S%,)1 ISl = &1, Sk = 5¥] |
(— closed BS and Margrabe formulas).
@ Hedging ratios :
° 6{;’( (1 <j < k < d, Exchange options)

o oo (1 <1< d, Call options)
o 0, (1</<d, assets).

» with almost similar definitions to those in dim 1.
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@ The option to hedge :

o u(t,S):=Eq [e " (T-t)g(57)[S: = S], with
S=(8..,58% eRrd.
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@ The option to hedge :
o u(t,S):=Eq [e " (T-t)g(57)[S: = S], with
S=(8..,58% eRrd.
o Payoff : Ep |g(S7)*™ < o0, for some py > 1.
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Greeks, Martingales

For I,m,n=1...d, we define

And similar definitions with C/K(t) (for 0 < j < k < d et
I,m,n=1..d).
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Greeks, Martingales

For I,m,n=1...d, we define

(1)
iV (1) :e*"msgmwt)
02 (t) = € 010 mSISOR pu(t)
0 (£) 1= € " 010mTn SIS SO} p pu(t)

And similar definitions with C/K(t) (for 0 < j < k < d et
I,m,n=1..d).

» Q-Martingales.
» enable tricky calculus of the I1té decompositions.
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Tracking error decompostion

Al
EN (gvﬂ-) =

- i s (-(3 i(3 n m
—Zﬁ&Zﬁwﬂﬁ“LU;@M#n+&#%nywmw%dm.
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Tracking error decompostion

=Al
EN (gu ) .
S S e S S S (5 (1) + RIS (1) dwpawraw

» NB. For DHS &5 (g, 7) =
— S S S f (5(s) + RIS (5)) dwraw.
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Tracking error decompostion

=Al
EN (gu )
S S e S S S (5 (1) + RIS (1) dwpawraw

> NB. For DHS :£y(g, 7) =
= O et S S (a0(5) + RED(s)) awmaw.

2

» One has to estimate Ep ’D,(‘z n(r) : the

regularity of g plays a key role.

and Ep ‘R,'S)n(r)
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Fractional regularity : the space L,
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When E|g(X7)|? < 400, we define

2
V;.7(g) := Ep |g(ST) — E2*(g(ST))]| -
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Fractional regularity : the space L,

When E|g(X7)|? < 400, we define

2
V;.7(g) := Ep |g(ST) — E2*(g(ST))]| -

Definition

For some « € (0,1],

Loo = {g t.q. E(g(S7)?) + sup o < oo

o<t<T (T — t)

Vi 7(8) } ‘
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o|fga):(x—f01MMhae(Q%ytmnge;5@+y
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Examples

If g is Lipschitz-continuous, then g € Lo 1.

If g is Holder-continuous with exponent «, then g € Lj .

If g(x) = (x — K)} with 2 € (0,3), then g € L, .1 !

If g(x) = (x — K)3 with a€ (,1], then g € Loy !
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Examples

If g is Lipschitz-continuous, then g € Lo 1.

If g is Holder-continuous with exponent «, then g € Lj .

If g(x) = (x — K)} with 2 € (0,3), then g € L, .1 !

If g(x) = (x — K)3 with a€ (,1], then g € Loy !

If g(x) =1p(x), then g € Lz,% !
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Key estimates

@ For1 </ mn<dand 0<t< T, and using the usual
Malliavin representation of Greeks,

1)’ < Vi, 7(8)
EP‘ _C(T—ﬂ’
2 Vt,T(g)
EP’”/m SC(T_t)z,

E]p‘t_l(?’) (t) < C—>Z

I,m,n
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Integrands estimates

2
@ bound for Ep ‘D,@n{n(t)‘ : ﬁ if gelo,.
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Integrands estimates

o bound for Ep [z®) (t) o ifgel
P Y m.n T 1€ 2,
e For R,',(:’L(t) it is more intricate !

i(3 ik ~j,k,(3
RID (1) =~ Yocjcnca 4 T (1) — ...
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Integrands estimates

2
@ bound for Ep ‘D,@n{n(t)‘ : ﬁ if gelo,.

e For Ri’(3) ' (t), it is more intricate !

3 N
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Integrands estimates

m,n (T—t)3—«

2
@ bound for Ep ‘D,(?) (t)‘ =S ifge Loo.

e For R,',(:L(t) it is more intricate !

I’(3) J— ./~k _.j)k’(?’)
R/,m,n(t) - Zogj<k§d 5t,- C/,m,n (t) e
(':j,ky(Z) " Ej,k,(3) ¢ ]
> terms —m () Ly (1) (with t; <t < tiv1)

¢k ciok
S G )

» using the closed formulas, we obtain that these terms
belong to L, (p > 2) if and only if x| < sthreshold
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Integrands estimates

2
@ bound for Ep ‘D,@n{n(t)‘ : ﬁ if gelo,.

e For R"(3) ' (t), it is more intricate !

3
er(n)n( t) = “_Zog<kgd5JkC/mn (t)—..

(2)(1‘) CJk( )( t)

I,m,n

» terms — k(z)(t-) C}' k(2)( £)
i m i

(with t; <t < tj11)

» using the closed formulas, we obtain that these terms
belong to L, (p > 2) if and only if x| < sthreshold

> If || < mthreshold then for0<t; <t <t 1 < T,

Er [RIS)( )) < (T_Ct)z
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Integrands estimates

Assume g € Ly, (for some a € (0,1]) and Ep |g(S7)[*° < oo for
some pg > 1. Then, if |r| < mthreshold and for0 <t < T,

~(3) i3) (]2 ¢
EP ul,m,n(t) + R/,m,n(t) = (T _ t)3—a :
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Time nets

For some 3 € (0, 1],

7@ = (VD) T o T(1- S5 0< k< N}

= >

NB.
o (1) = uniform grid.

@ For 8 < 1, the points in 7(®) are more concentrated near T.
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Main result

Theorem (with uniform grid)

Assume g € Ly, and Ep |g(ST)|*” < oo for some py > 1.

e Regular grid 7). For N sufficiently large to ensure

‘ﬂ_(l)’ _ % < ﬂ_threshold, one has

1
Na/2)'

_ 2
(Ez |EN' (g, 7)) "2 = O
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Main result

Theorem (with uniform grid)

Assume g € Ly, and Ep |g(ST)|*” < oo for some py > 1.

e Regular grid 7). For N sufficiently large to ensure
‘ﬂ_(l)’ _ % < ﬂ_threshold, one has

1
Na/2)'

_ 2
(Ez |EN' (g, 7)) "2 = O

» tight estimate for & < 1 (if & = 1, the rate may go from N2 to
N).

» DGHS with a regular grid does not improve the rate of
convergence.
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Main result

Theorem (with non regular grid)

o Non regular grid 7(%), 3 € (0,1). For N sufficiently large to

ensure |w(B)| < gthreshold " 5ne hag

— 2
(E» [E8 (6,7 )¥* =

(

\

1 ) «
O(—=) ifB € (5.1)
Vi0egN, ...«
O( N ) Ifﬁ - 57

ca(%7)/f5<z(o,gs.

» NB. These estimates are equal to those we observe numerically.
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Numerical results

Figure: For a Digital Call : at the top (DHS), log(Ez[Ex (g, 7)[?) vs
log(N). At the bottom (DGHS), log(Ep|Ex (g, 7®)[2) vs log(N).
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Numerical results

Remark on the convergence in distribution

Delta hedging of a DIGITAL CALL: tracking error distribution. Beta= 1, N= 1000
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Delta-Gamma hedging of a DIGITAL GALL : tracking error distribution. Beta= 1, N= 1000
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Figure: Distributions of the DHS (at the top) and DGHS (at the
bottom) tracking errors for a Digital Call

— Convergences in Ly and in distribution are different. 20/21



Further research

@ Extension to more general model for S
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Further research

@ Extension to more general model for S

@ Rate of convergence in distribution of the DGHS tracking
error 7
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