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Price Expansion

P: price of a vanilla European option (to start with)

P = P0 + v0∂σP0 + v1D1∂σP0 + v2D2P0 + v3D1D2P0

+ v4∂2
σσP0 + · · ·

D1 = S
∂

∂S
(Delta), D2 = S2 ∂2

∂S2
(Gamma) ∂σ =

∂

∂σ
(V ega) · · ·

vi = vi(τ), payoff independent, τ = time-to-maturity

P0 is typically a constant volatility price → closed-form formula

Black-Scholes in Equity (Vasicek or CIR in Fixed Income, Black-Cox in

Credit, ...)

Where do we get such an expansion?

What do we expect from it?



Wish List

P = P0 + v0∂σP0 + v1D1∂σP0 + v2D2P0 + v3D1D2P0

+ v4∂
2
σσP0 + · · ·

• Accuracy: the truncated expansion should be a good

approximation (vi → 0 fast enough)

• Stability: the coefficients v’s should be stable in time

“short-time tight-fit vs. long-time rough fit”

• Should be useful for hedging under physical measure (the

v’s are calibrated under risk-neutral)

• Should lead to practical consistent pricing of exotic

derivatives

Let’s look at calibration first →
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Calibration on Implied Volatilities

For vanilla European options we have: ∂σP0 = τ σ̄D2P0 so that

P = P0 + v0∂σP0 + v1D1∂σP0 +
v2

σ̄τ
∂σP0 +

v3

σ̄τ
D1∂σP0 + · · ·

For Calls, P0 = CBS and by direct computation

P = CBS +

{

v0 +
v2

σ̄τ
+
(

v1 +
v3

σ̄τ

)(

1 − d1

σ̄
√

τ

)}

∂σCBS + · · ·

where d1 =
−LM+(r+ 1

2
σ̄2)τ

σ̄
√

τ
, and LM ≡ log(K/S)

Expanding the implied volatility I = σ̄ + I1 + · · · →

P ≡ CBS(σ̄ + I1 + · · ·) = CBS + I1∂σCBS + · · ·

=⇒ I1 = v0 +
v2

σ̄τ
+
(

v1 +
v3

σ̄τ

)(

1 − d1

σ̄
√

τ

)

+ · · ·

Affine in LMMR: I = b + a LM
τ + (quartic in LM) + · · ·

where the term structure of the v’s (τ dependence) is important.
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Calibration Examples

Goal: fit

I = b + a
LM

τ
+ (quartic in LM) + · · ·

to the observed implied volatility surface.

We typically fit the parameters a, b, ... by regressing in LMMR

maturity-by-maturity, then we fit their dependence in τ .

We will see that our expansion leads to a, b which are affine in τ .

Some examples −→
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S&P 500 Implied Volatility data on June 5, 2003 and fits to the affine

LMMR approximation for six different maturities.
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linear regression of b (resp. a) with respect to time to maturity τ .
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Higher Order Expansion

I ∼
4∑

j=0

aj(τ) (LM)
j
+

1

τ
Φt,
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S&P 500 Implied Volatility data on June 5, 2003 and quartic fits to the

asymptotic theory for four maturities.
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Stochastic Volatility Models

Equity for instance.

Under physical measure:

dSt

St
= µdt + σtdW

(0)
t

σt = f(Yt, Zt, · · ·)
dYt = α(Yt)dt + β(Yt)dW

(1)
t

dZt = c(Zt)dt + g(Zt)dW
(2)
t

· · ·

Volatility factors can be differentiated by their time scales



Multiscale Stochastic Volatility Models
σt = f(Yt,Zt)

• Yt is fast mean-reverting (ergodic on a fast time scale):

dYt =
1

ε
α(Yt)dt +

1√
ε
β(Yt)dW

(1)
t , 0 < ε ≪ 1

• Zt is slowly varying:

dZt = δc(Zt)dt +
√

δ g(Zt)dW
(2)
t , 0 < δ ≪ 1

Separation of time scales: ε << T << 1/δ

1

T

∫ T

0

σ2
t dt =

1

T

∫ T

0

f2(Yt, Zt)dt −→
〈
f2(·, z)

〉

ΦY

Local Effective Volatility: σ̄2(z) ≡
〈
f2(·, z)

〉

ΦY
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Market Prices of Volatility Risk

Under the risk neutral measure IP ⋆ chosen by the market:

dSt = rStdt + f(Yt, Zt)StdW
(0)⋆
t

dYt =

(
1

ε
α(Yt) −

1√
ε
β(Yt)Λ(Yt, Zt)

)

dt +
1√
ε
β(Yt)dW

(1)⋆
t

dZt =
(

δ c(Zt) −
√

δ g(Zt)Γ(Yt, Zt)
)

dt +
√

δ g(Zt)dW
(2)⋆
t

d < W (0)⋆, W (1)⋆ >t = ρ1dt

d < W (0)⋆, W (2)⋆ >t = ρ2dt

Λ and Γ: market prices of volatility risk



Pricing Equation

P ε,δ(t, x, y, z) = IE⋆
{

e−r(T−t)h(ST )|St = x, Yt = y, Zt = z
}

Feynman–Kac:
(

1

ε
LY +

1√
ε
Lρ1,Λ + L +

√
δLρ2,Γ + δLZ +

√

δ

ε
Lρ12

)

P ε,δ = 0

P ε,δ(T, x, y, z) = h(x)

with

L = LBS(f(y, z)) =
∂

∂t
+

1

2
f2(y, z)x2 ∂2

∂x2
+ r

(

x
∂

∂x
− ·
)



Regular-Singular Perturbations

P ε,δ =
∑

i,j

εi/2 δj/2 Pi,j = P0 +
√

ε P1,0 +
√

δ P0,1 + · · ·

LBS(σ̄(z))P0 = 0, P0(T, x) = h(x) =⇒ P0 = PBS(σ̄(z))

P0 is independent of y and z is a parameter.

bfLBS(σ̄(z))
(√

εP1,0

)
+ V ε

2 D2PBS + V ε
3 D1D2PBS = 0

bfLBS(σ̄(z))
(√

δP0,1

)

+ 2
(
V δ

0 ∂σPBS + V δ
1 D1∂σPBS

)
= 0

P1,0(T,x) = P0,1(T,x) = 0

Vδ
0 and Vε

2 are volatility level adjustments due to Γ and Λ resp.

Vδ
1 and Vε

3 are skew parameters proportional to ρ2 and ρ1 resp.
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Important: these Black-Scholes equations will hold for exotic

options with additional boundary conditions, but with the

same group parameters V ’s



Regular-Singular Perturbations

P ε,δ =
∑

i,j

εi/2 δj/2 Pi,j = P0 +
√

ε P1,0 +
√

δ P0,1 + · · ·

LBS(σ̄(z))P0 = 0, P0(T, x) = h(x) =⇒ P0 = PBS(σ̄(z))

P0 is independent of y and z is a parameter.

LBS(σ̄(z))
(√

εP1,0

)
+ Vε

2D2PBS + Vε
3D1D2PBS = 0

LBS(σ̄(z))
(√

δP0,1

)

+ 2
(
Vδ

0∂σPBS + Vδ
1D1∂σPBS

)
= 0

P1,0(T,x) = P0,1(T,x) = 0

Vδ
0 and Vε

2 are volatility level adjustments due to Γ and Λ resp.

Vδ
1 and Vε

3 are skew parameters proportional to ρ2 and ρ1 resp.

Important: these Black-Scholes equations will hold for exotic

options with additional boundary conditions, but with the

same group parameters V ’s



Explicit formulas for Vanilla European Options

Notation: T − t = τ

√
εP1,0 = τ (Vε

2D2PBS + Vε
3D1D2PBS)

easily checked by using LBSDi = DiLBS

bf
√

δP0,1 = τ
(
V δ

0 ∂σPBS + V δ
1 D1∂σPBS

)

easily checked by using ∂PBS = τ σ̄D2PBS and then LBSDi = DiLBS .

• Back to our expansion −→

P = P0 + v0∂σP0 + v1D1∂σP0 + v2D2P0 + v3D1D2P0 + · · ·

v0 = τVδ
0 , v1 = τVδ

1

v2 = τVε
2 , v3 = τVε

3

In terms of calibration to implied volatilities:
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Implied Volatility Calibration Formulas

σ̄ +
V2

σ̄
+

V3

2σ̄
(1 − 2r

σ̄2
) + τ

(

V0 +
V1

2
(1 − 2r

σ̄2
)
)

︸ ︷︷ ︸

+
(

V3

σ̄3
+ τ

V1

σ̄2

)

︸ ︷︷ ︸

LMMR

intercept b slope a

Either

• one estimates σ̄ from historical data (preferred for hedging

where V0 and V2 do not appear), and then fitting

maturity-by-maturity and regressing in τ , one gets:

1. V1 and V3 from the slope a

2. V0 and V2 from the intercept b

• or one uses the adjusted effective volatility σ⋆ ≡
√

σ̄2 + 2V2

calibrated from option data , along with V0, V1, and V3

σ
⋆ +

V3

2σ⋆
(1 − 2r

σ̄⋆2
) + τ

(

V0 +
V1

2
(1 − 2r

σ⋆2
)
)

+
(

V3

σ⋆3
+ τ

V1

σ⋆2

)

LMMR
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2. V0 and V2 from the intercept b

• or one uses the adjusted effective volatility σ⋆ ≡
√

σ̄2 + 2V2

calibrated from option data , along with V0, V1, and V3 (preferred

for pricing):

σ
⋆ +

V3

2σ⋆
(1 − 2r

σ̄⋆2
) + τ

(

V0 +
V1

2
(1 − 2r

σ⋆2
)
)

+
(

V3

σ⋆3
+ τ

V1

σ⋆2

)
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Back to the Wish List: Accuracy

If the payoff function h is smooth:

P ε,δ

=
(

P0 +
√

εP1,0 + εP2,0 + ε3/2P3,0

)

+
√

δ
(
P0,1 +

√
εP1,1 + εP2,1

)
+ Rε,δ

=
(

P0 +
√

εP1,0 +
√

δP0,1

)

+ O(ε + δ) + Rε,δ

then the residual Rε,δ satisfies

Lε,δRε,δ = O(ε + δ)

Rε,δ(T ) = O(ε + δ)

and therefore Rε,δ = O(ε + δ).

If h is non-smooth (call option in particular), then use a careful

regularization.



Path-Dependent Derivatives (Barrier, Asian,...)

• Calibrate σ⋆, V0, V1 and V3 on the implied volatility surface

• Solve the corresponding problem with constant volatility σ⋆

=⇒ P0 = PBS(σ⋆)

• Use V0, V1 and V3 to compute the source

2 (V0∂σP⋆
BS + V1D1∂σP⋆

BS) + V3D1D2P
⋆
BS

• Get the correction by solving the SAME PROBLEM

with zero boundary conditions and the source.



American Options

• Calibrate σ⋆, V0, V1 and V3 on the implied volatility surface

• Solve the corresponding problem with constant volatility σ⋆

=⇒ P⋆ and the free boundary x⋆(t)

• Use V0, V1 and V3 to compute the source

2 (V0∂σP⋆
BS + V1D1∂σP⋆

BS) + V3D1D2P
⋆
BS

• Get the correction by solving the corresponding problem with

fixed boundary x⋆(t), zero boundary conditions and the

source.



Cost of the Black-Scholes Hedging Strategy

PBS(T, ST ) = h(ST )

PBS(t, St) = atSt + bte
rt , at = ∂xPBS

Infinitesimal cost:

dPBS(t, St)− (atdSt + rbte
rtdt)

︸ ︷︷ ︸
= 1

2

(
f2(Yt, Zt) − σ2

)
D2PBS(t, St)dt

self-financing part

Cumulative financing cost:

EBS(t) =
1

2

∫ t

0

e−rs
(
f2(Ys,Zs) − σ2

)
D2PBS(s,Ss)ds

Choice of σ ?



Choice of σ ?

Since Yt is fast mean-reverting (ε << 1), integrals like
∫ t

0

(
f2(Ys,Zs) − σ2

)
Ψsds will be small with ε if

σ2 = σ̄2(z) = 〈f2(·, z)〉Φ(Y)

Therefore two choices:

• σ2 = σ̄2(Zt) and PBS = PBS(t, St; σ̄(Zt)), in which case σ̄(Zt)

needs to be estimated continuously (and dPBS revisited)

• σ2 = σ̄2(Z0) and PBS = PBS(t, St; σ̄(Z0)) with

f2(Ys,Zs) − σ2 =
(
f2(Ys,Zs) − σ̄2(Zt)

)
+
(
σ̄2(Zt) − σ̄2(Z0)

)

in which case parameters are frozen at time zero, an additional

cost of order
√

δ comes from the second term (offset in practice

by re-calibration at
√

δ-frequency).



Corrected Hedging Strategy

A careful analysis of the cost shows

E0(t) =
1

2

∫ t

0

e−rs
(
f2(Ys,Zs) − σ̄2(Zt)

)
D2PBS(s,Ss)ds

=
√

ε (Bε
t + Mε

t) + O(ε + δ),

where Mε
t is a martingale, and

Bε
t = −ρ1

2

∫ t

0

e−rsβ(Ys)
∂φ

∂y
f(Ys,Zs)D1D2PBS(s,Ss)ds

is a bounded variation bias which can be compensated by using

the corrected hedging ratio at given by

∂xPBS + (T − t)V3∂xD1D2PBS + (T − t)V1∂xD1∂σPBS

The last term compensates for the bias generated by σ̄2(Zt) − σ̄2(Z0)



Examples of other:

• Models

• Regimes

• Applications



A Model with Volatility Time-Scale of Order One

In the model σt = f(Yt,Zt), if one wants to:

• keep Y fast mean-reverting

• let Z be on a time scale comparable to maturity (or add one

such factor)

• keep the computational tractability

then, one needs to make sure that the SV model σ̄2(Zt) is tractable.

An interesting choice is the Heston model:

“A Fast Mean-Reverting Correction to Heston Stochastic Volatility

Model” with Matthew Lorig (PhD student, UCSB), where we

develop this idea.

An example of fit −→
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Fast Mean-Reverting SV and Short Maturities

If the time scale of the fast mean-reverting factor Y is ε << 1, and

if the maturity of interest is small but still large compared with ε,

then, one can consider the regime

ε << T ∼
√

ε << 1

It involves a non-trivial mixture of Large Deviation (short

maturity) and Homogenization (fast mean reverting coefficient):

“Short maturity asymptotics for a fast mean reverting Heston

stochastic volatility model” with Jin Feng and Martin Forde

(SIAM Journal on Financial Mathematics, Vol. 1, 2010).

Interestingly, in this regime and for this model, we derive explicit

formulas for the limiting implied volatility which looks like −→



Three parameters which control the implied volatility skew’s

level (θ), slope (ρ) and convexity (ν/κ).



A Cool Application to Forward-Looking Betas

Discrete time CAPM model:

Ra − Rf = βa(RM − Rf ) + ǫa

Christoffersen, Jacobs, and Vainberg (2008, McGill University):

βa =
(

SKEWa

SKEWM

) 1

3
(

V ARa

V ARM

) 1

2

where VAR and SKEW are variance and risk-neutral skewness

With Eli Kollman (PhD 2009, UCSB), we propose in

“Calibration of Stock Betas from Skews of Implied Volatilities”

(Applied Mathematical Finance, 2010):

β̂a =

(

Va,ǫ
3

VM,ǫ
3

)1/3

=

(
aa,ǫ

aM,ǫ

)1/3(
ba∗

bM∗

)
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LMMR fits (2/18/2009): S&P500 and Amgen, beta estimate is 1.03

−1 −0.5 0 0.5 1
0.3

0.35

0.4

0.45

0.5

0.55

LMMR

Im
pl

ie
d 

Vo
l

S&P 500

−1 −0.5 0 0.5 1
0.3

0.35

0.4

0.45

0.5

0.55

LMMR

Im
pl

ie
d 

Vo
l

AMGN



LMMR fits (2/19/2009): S&P500 and Goldman Sachs, beta estimate is 2.28
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THANKS FOR YOUR ATTENTION


