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What is a CDO?

Banks suffered tens of billion dollar losses due to subprime CDOs
at the end of 2007

What is a CDO?
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What is a CDO?

Collateralized Debt Obligation (CDO)

A CDO is a debt security that is constructed from a portfolio of
collateral (assets).
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What is a CDO?

Morgan
Stanley

Asset 1
Asset 2

Asset 100

CDO Tranches

Tranche 6
22%-100% loss

Tranche 5
12%-22% loss

Tranche 4
9%-12% loss

Tranche 3
6%-9% loss

Tranche 2
3%-6% loss

Tranche 1
0%-3% loss
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Objective of a CDO Pricing Model

τi : default time of the i-th name, i = 1, . . . ,n

Cumulative portfolio loss at time t :

Lt =

n
∑

i=1

ci · 1{τi≤t}

CDO tranche valuation reduces to calculation of E [(Lt − K )+]

Objective of CDO pricing model

calibrate to single name marginal default probability
calibrate to CDO tranche spreads
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Two Approaches for CDO Modeling

Top-down approach builds models for the portfolio cumulative loss
process directly

Good fit for standard CDO portfolios
CANNOT calibrate to single name marginal default probability
Longstaff & Rajan, 2007, Giesecke, et al., 2007, Halperin, 2007,
Cont & Minca, 2007

Bottom-up approach builds models for single name default times

Consistent with single name marginal default probability
Has more difficulty in calibrating CDO tranche spreads
Examples: Static bottom-up models, e.g. copula models, dynamic
intensity models
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The Market Standard—Gaussian Copula Models

Idea: using copula functions to model default time correlation

Literature: Gaussian copula model (Li, 2000)

What is wrong with Gaussian copula?

Gaussian copula cannot generate tail dependence

lim
q→0

P(τ2 < F−1
2 (q)|τ1 < F−1

1 (q)) = 0

Gaussian copula does not work during crisis, when the default
correlation is strong.
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Gaussian Copula Does Not Work During Crisis
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Dynamic Intensity Models

General idea
Single name default intensity λi (t): (Jarrow & Turnbull, 1995)

P(τi ≤ t +∆t |Ft ) = λi (t)∆t + o(∆t), on {τi > t}

Building correlation among default intensities λ1(t), . . . , λn(t)

Dynamic intensity model for CDO pricing (Duffie & Gârleanu,
2001, Mortensen, 2006)

λi(t) = aiλ
M(t) + λid

i (t), i = 1, . . . , n
λM(t) and λid

i (t) are independent affine jump diffusion processes

Drawback: cannot incorporate strong default correlation

Other dynamic models: Hull & White (2008), Hurd & Kuznetsov
(2006), Joshi & Stacey (2006), Papageorgiou & Sircar (2007),
Schönbucher (2007), Tsui (2010)
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Motivation

Default clustering effect: cross-sectional and dynamic (across time)

The recent demise of major financial institutions

The iTraxx 5Y index tranche spreads

Tranches 0-3% 3-6% 6-9% 9-12% 12-22% 22-100%
09/20/07 1812 84 37 23 15 7
03/14/08 5150 649 401 255 143 70
09/16/08 4598 618 375 215 102 59

Empirical evidence of default clustering (Das, Duffie, Kapadia, &
Saita, 2007, Longstaff & Rajan, 2007, Azizpour & Giesecke, 2008)
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Motivation (continued)

Dynamic intensity model (Doubly stochastic model):

τi = inf {t ≥ 0 : Λi(t) ≥ Ei} ,Ei
d
∼ exp(1), i .i .d .

Λi(t) =
∫ t

0
λi(s)ds (Λi(t) is continuous!)

Drawback: It cannot generate simultaneous defaults of several
names.

Empirical observation of simultaneous default: 24 railway firms
defaulted on June 21, 1970 (Azizpour & Giesecke, 2008)

Empirical evidence of default clustering exceeding that implied by
the doubly stochastic model (Das, Duffie, Kapadia, & Saita, 2007)
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The New Model: Conditional Survival (CS) Model

Our new model: conditional survival (CS) model is based on
cumulative default intensity

τi = inf{t ≥ 0 : Λi(t) ≥ Ei},Ei
d
∼ exp(1), i .i .d .

Λi(t) =
J
∑

j=1

ai ,jMj(t) + X id
i (t), i = 1, . . . ,n.

M(t) = (M1(t), . . . ,MJ(t)): market factor processes that may have
jumps
X id

i (t): idiosyncratic part of the cumulative default intensity
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Conditional Survival Probability

Conditional survival probability

qc
i (t) := P(τi > t |M(t)) = E

[

e−X id
i (t)
]

e−
∑J

j=1 ai,j Mj (t)

Survival probability

qi(t) := P(τi > t) = E
[

e−X id
i (t)
]

E
[

e−
∑J

j=1 ai,j Mj (t)
]

Conditional survival probability is the building block

qc
i (t) = qi(t) ·

e−
∑J

j=1 ai,j Mj (t)

E
[

e−
∑J

j=1 ai,j Mj (t)
]

Use qi(t) as input: the model automatically calibrates to single
name default probability

No dynamics for X id
i (t)
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Specifying Dynamics of Market Factors

Pólya process M(t)

A Pólya process is a mixed Poisson process
Clustering jumps: a Pólya process has positive correlation between
increments

Cov(M(t),M(t + h) − M(t)) > 0

Discrete integral of CIR process: M(t) =
∫ t

0 V (s)ds

dV (t) = κ(θ − V (t))dt + σ
√

V (t)dW (t)

Laplace transforms of both processes have closed form.
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CDO Pricing by Exact Simulation

Simulation is fast: only need to simulate market factor processes
and Bernoulli r.v.s

Key fact: conditional on M(t), default events
Ii = 1{τi≤t}, i = 1, . . . ,n are independent Bernoulli(1 − qc

i (t)) r.v.

Exact simulation of Lt at given time t :
1 Generate market factors M1(t),M2(t), . . . ,MJ(t).
2 Calculate the conditional survival probability analytically

qc
i (t) = qi(t) ·

e−

∑J
j=1 ai,j Mj (t)

E
[

e−

∑J
j=1 ai,j Mj (t)

]

3 Generate independent Ii
d
∼ Bernoulli(1 − qc

i (t)), i = 1, . . . , n.
4 Calculate Lt =

∑n
i=1 ci · Ii .

E [(Lt − K )+]: leads to CDO tranche spreads

Control variants: Lt
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Sensitivity of CDO tranches w.r.t Single Name CDS

Sensitivity w.r.t. to single name survival probability

E [(Lt − K )+] = E [Ai(t)qi(t) + Bi(t)]

∂E [(Lt − K )+]

∂qi(t)
= E [Ai(t)]

Ai(t) can be obtained as a byproduct in each simulation of Lt .

The sensitivities w.r.t. each of the n single name CDS are
obtained concurrently with CDO tranche pricing.
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Calibration to iTraxx 5Y Tranche Spreads on 03/14/08

CDO and CDS data on March 14, 2008, right before the collapse
of Bear Stern

Calibration results by using 2 Polya process and 1 discrete
integral of CIR process

Tranche(%) 0-3 3-6 6-9 9-12 12-22 22-100
Market spread 5150 649 401 255 143 70
Model spreads 5071 689 394 258 164 67
B-A spread 158 24 25 20 12 3

Pricing error: Chi-square = 6.48(p-value = 0.26), RMSE = 1.11

CHISQ =

6
∑

k=1

(sk − so
k )

2

sk
, RMSE =

√

√

√

√

1
6

6
∑

k=1

(

sk − so
k

so,a
k − so,b

k

)2
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Model and Market Implied Correlation on 03/14/08
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Calibration to iTraxx 5Y Tranche Spread on 09/16/08

CDO and CDS data on September 16, 2008, right after Lehman
Brothers went bankruptcy

Calibration results by using 2 Polya process and 1 discrete
integral of CIR processes

Tranche(%) 0-3 3-6 6-9 9-12 12-22 22-100
Market spread 4598 618 375 215 102 59
Model spread 4617 631 347 217 131 53
Bid-ask spread 118 14 13 11 5 3

Pricing error: Chi-square = 9.25(p-value = 0.10), RMSE = 2.55
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Model and Market Implied Correlation on 09/16/08
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Summary

We propose the conditional survival (CS) model:

It is based on cumulative default intensities instead of intensities.

It is able to generate a substantially high degree of default
clustering.

It does not specify any dynamics for idiosyncratic default risk
component.

It automatically calibrates to single name marginal default
probability.
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Thank you!
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Parameter Stability

Table: Compare parameters for 03/14/08 and 09/16/08

03/14/08 09/16/08
α1 0.5321 0.6871
β1 0.0301 0.0179
α2 0.0013 0.0058
β2 8.2619 9.0245
κ 0.0526
σ 1.6837

λ(0) 1.9176
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Implicit Constraints on Model Parameters

The idiosyncratic cumulative intensities X id
i (t) ≥ 0 and increasing

E
[

e−X id
i (Tm)

]

≤ E
[

e−X id
i (Tm−1)

]

≤ · · · ≤ E
[

e−X id
i (T1)

]

≤ 1,∀1 ≤ i ≤ n

Recall that

E
[

e−X id
i (t)
]

=
qi(t)

E
[

e−
∑J

j=1 ai,jMj (t)
]

This imposes parameter constraints:

qi(Tm)

E
[

e−
∑J

j=1 ai,jMj (Tm)
] ≤ · · · ≤

qi(T1)

E
[

e−
∑J

j=1 ai,jMj (T1)
] ≤ 1,∀1 ≤ i ≤ n
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Calibration Algorithm

Pricing error function: F (Θ)

1 Initialization: set market factor parameter Θ0, and set s = 0.
2 Iteration: s → s + 1

For given Θs, determine loading coefficients ai,j by solving a
constrained optimization problem:

min E
[

e−

∑J
j=1 ai,j Mj (Tm)

]

− qi(Tm)

s.t . qi (Tm)

E
[

e
−

∑J
j=1 ai,j Mj (Tm )

] ≤ · · · ≤ qi (T1)

E
[

e
−

∑J
j=1 ai,j Mj (T1)

] ≤ 1

0 ≤ ai,j

Calculate the tranche spreads and pricing error F (Θs)
Update the market factor parameter Θs → Θs+1 by some
optimization routine, e.g. Powell’s direction-set algorithm
Repeat
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