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Discrete time hedging

Setting the problem

» Hedging a contingent claim H with maturity T with a
strategy V¢, k =0,...,N — 1 in a risky asset S.
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Discrete time hedging

Setting the problem

» Hedging a contingent claim H with maturity T with a
strategy V¢, k =0,...,N — 1 in a risky asset S.

» Start from a value c to hedge the payoff H. The hedging error
of the strategy is

N
e, c)=H—c/P(0,T) =) 9y AS,,.
k=1

Stefano Herzel Dynamic Strategies in Affine Models



Discrete time hedging

Setting the problem

» Hedging a contingent claim H with maturity T with a
strategy V¢, k =0,...,N — 1 in a risky asset S.

» Start from a value ¢ to hedge the payoff H. The hedging error
of the strategy is

e(9,c) =H—c/P(0, T) ZﬁtkAStk

» The goal is to compute mean and variance of £(1J, ¢) for given
H,c,v
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Ingredients

General Setting

> Let (Q, F, (Ft)o<t<oo, P) be a probability space. X = (X;) is
a time-homogeneous affine process with state space D ¢ R
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Ingredients

General Setting

> Let (Q,F, (Ft)o<t<oo, P) be a probability space. X = (X) is
a time-homogeneous affine process with state space D  RY

» y =In(S) is one component of X.
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> Let (Q,F, (Ft)o<t<oo, P) be a probability space. X = (X) is
a time-homogeneous affine process with state space D  RY

» y =In(S) is one component of X.

» Other possible components of X
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> Let (Q,F, (Ft)o<t<oo, P) be a probability space. X = (X) is
a time-homogeneous affine process with state space D  RY
» y =In(S) is one component of X.
» Other possible components of X
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Ingredients

General Setting

> Let (Q,F, (Ft)o<t<oo, P) be a probability space. X = (X) is
a time-homogeneous affine process with state space D  RY

» y =In(S) is one component of X.

» Other possible components of X

> ... stochastic volatility
» ... stochastic interest rate
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Ingredients

Affine Processes

» A time - homogeneous Markov process X is affine if
E;[exp (u- X7)] = exp(a(u, t, T) + B(u, t, T) - X¢)

where a(u, t, T), B(u, t, T) satisfy a set of Riccati equations
and are analytic on a domain U C C9, for t € [0, T]
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Ingredients

Affine Processes

» A time - homogeneous Markov process X is affine if
Ef [exp (U : XT)] = exp (a(ua t, T) + B(uv t, T) : Xt)

where a(u, t, T), B(u, t, T) satisfy a set of Riccati equations
and are analytic on a domain U C CY, for t € [0, T]

» SV model: X = (y,v), u= (u1,u) and 8 = (u1,32) (
Heston)
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Ingredients

Affine Processes

» A time - homogeneous Markov process X is affine if
Ef [exp (U : XT)] = €Xp (a(ua t, T) + B(uv t, T) : Xt)
where a(u, t, T), B(u, t, T) satisfy a set of Riccati equations

and are analytic on a domain U C C9, for t € [0, T]

» SV model: X = (y,v), u=(u1,uw) and 5 = (u1,52) (
Heston)

> Levy: X =(y), 6=u. (BSand..)
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Ingredients

Affine Processes

» A time - homogeneous Markov process X is affine if
Ef [exp (U : XT)] = €Xp (a(ua t, T) + B(uv t, T) : Xt)
where a(u, t, T), B(u, t, T) satisfy a set of Riccati equations

and are analytic on a domain U C C9, for t € [0, T]

» SV model: X = (y,v), u=(u1,uw) and 5 = (u1,52) (
Heston)

> Levy: X =(y), =u. (BSand..)
» SIR model: X = (r), 3 solves Riccati ( Vasicek, CIR)
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Ingredients

Affine Processes

>

A time - homogeneous Markov process X is affine if
Ef [exp (U : XT)] = exp (a(ua t, T) + B(uv t, T) : Xt)

where a(u, t, T), B(u, t, T) satisfy a set of Riccati equations
and are analytic on a domain U C CY, for t € [0, T]

» SV model: X = (y,v), u= (u1,u) and 8 = (u1,2) (
Heston)

> Levy: X =(y), f=u. (BSand..)
» SIR model: X = (r), 3 solves Riccati ( Vasicek, CIR)
» SV + SIR: X = (y,v,r)
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Ingredients

Affine Processes

>

vV v v Vv

A time - homogeneous Markov process X is affine if
Ef [exp (U : XT)] = exp (a(ua t, T) + B(uv t, T) : Xt)

where a(u, t, T), B(u, t, T) satisfy a set of Riccati equations
and are analytic on a domain U C CY, for t € [0, T]

SV model: X = (y,v), u= (u1,u2) and 5 = (u1,52) (
Heston)

Levy: X =(y), 6=u. (BS and ...)
SIR model: X = (r), (3 solves Riccati ( Vasicek, CIR)
SV + SIR: X = (y,v,r)
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Ingredients

Integral representation of payoffs

» Write the payoff of a contingent claim written on S, maturity
T, as

R+ico
H= / e?Tp(z)dz

R—ioco

where y = In(S)
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Ingredients

Integral representation of payoffs

» Write the payoff of a contingent claim written on S, maturity

T, as
R+ioco
H :/ e?Tp(z)dz

R—ioco
where y = In(S)
g R+i 1
1 100 K —Z
H= - Kt = — 2T —— d
(57 ) 270 JRr_iso ¢ z(z—-1) ‘

European call if R > 1, putif R <0
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Results

Hedging Strategies

» If Q is a pricing measure, P; the price at time ¢t of a
contingent claim is

Pe = EZ[H]

(assume here r = 0 deterministic)
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Results

Hedging Strategies

» If Q is a pricing measure, P; the price at time t of a
contingent claim is
P: = EC[H]
(assume here r = 0 deterministic)
» If the payoff H has an integral representation

"R+ioco
B = 15| e p(z)dz]

R—ioco
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Results

Hedging Strategies

» If Q is a pricing measure, P; the price at time t of a
contingent claim is
P: = EC[H]
(assume here r = 0 deterministic)
» If the payoff H has an integral representation

R+ioco
P. = EQ[ e?7p(z)dz]
R—ioco
» Using Fubini
"R+ico
P = / EL e XT]p(2)dz
R—ico

*R+-ico
= / ’ exp (@(zly,t, T) + B(z1,,t, T) - X;) p(z)dz

R—ioco
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Results

Hedging Strategies in SV

» Consider hedging strategy ¢ of the form

R+ico
Ve, = / Ve, (2)p(2)dz,

R—ioco

with

Ve, (2) = exp (A(z, tk) + Bi(z, tk)ye, + B2(z, tk)ve,)
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Results

Examples for Heston Model

> Model Delta Af': A=In(z) +&(zl,,t,T), Bi=2z—1
B, = ﬂg(zly, t, T)
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Results

Examples for Heston Model

» Model Delta AY: A=In(z) + &(zl,,t,T), Bi=z—1
Bg = ﬁg(zly, t, T)
» Continuous Time Local Optimal Strategy

or = af + vy
t

A=1In(z+ pofa(zly,t, T)) + a(zl,,t, T), Bi=z—-1
B, = /jQ(Zly, i T)
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Results

Examples for Heston Model

» Model Delta AY: A=In(z) + &(zl,,t,T), Bi=z—1

Bg = Bg(zly, t, T)
» Continuous Time Local Optimal Strategy

or=AH+ E2pH

A=In(z+ pofa(zl,,t, T)) +a(z1,,t, T), Bi=z—1

By = ﬁQ(Zly, t, T)
» BS Delta, with constant volatility o
A=In(z) +ab(z1,,t,T), Bi=2z—-1, B, =0
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Results

Examples for Heston Model

» Model Delta AY: A=In(z) + &(zl,,t,T), Bi=z—1

Bg = Bg(zly, t, T)
» Continuous Time Local Optimal Strategy

or=AH+ E2pH

A=In(z+ pofa(z1y,t,T))+ a(z1y,t, T), By =2z—1
B, = ﬁ2(21ya t, T)

» BS Delta, with constant volatility o
A=In(z) +ab(z1,,t,T), Bi=2z—-1, B, =0

» BS Delta, with volatility o+

2 4 o’
Oy = T—tEt\/t Vst

A = In(z) + something, By =z —1, B,




Results

Hedging error

» The hedging error of such a strategy for a claim w.i.r. can be
written as

N
e,c) = H—c—) UyAS =
k=1

R+ioco N
[ e
JR—ioco k—

ﬁtk(z)A5k> p(z)dz — ¢
1
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Results

Hedging error

» The hedging error of such a strategy for a claim w.i.r. can be
written as

N
E(ﬁ,c) = H_C—Z'ﬁtkASk:
k=1

R+-ico N
= / (ez}’T - Zz?tk(z)ASk> p(z)dz — ¢
k=1

R—ioco

» Under technical conditions, can use Fubini
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Results

Expected value of hedging error

E[e?T] = ¢(21,,X0,0, T)
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Results

Expected value of hedging error

" E[e¥T] = ¢(z1,, X0,0, T)
>
E[9: (2)AS] = e*E | DWuatBavics(oru — oY1)
= e (¢((z—1,B),(1,0), X0, 0, tx_1, ty)—
$2((z, B2), X0, 0, tx—1))
k=1,...,N
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Results

Main results

» Semi-explicit formulas for expected value and variance of
hedging error, for any number of trading dates, for any claim

w.i.r. and any hedging strategy of the described form in affine
models
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Results

Main results

» Semi-explicit formulas for expected value and variance of
hedging error, for any number of trading dates, for any claim

w.i.r. and any hedging strategy of the described form in affine
models

"R+ico

Ele(9,0)] = / e(z)p(z)dz

R—ioco

R-+ico R+/oo
E[e(9,0)7] = / / )p(y)p(2)dydz,
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Heston model

Heston model

1
dye = (j1 — Hve)dt + VVedW}
dvy = k(0 — vi)dt + o /vedW?
with d < W}, W2 >= pdt

vo =0.05 p=0,0=0.05, k=3, 0 =0.5

yo = log(So) = log(100).
Feller condition 2x60 > o2 does not hold!
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Heston model

Heston model

» European ATM call options with maturity 7 = 0.5
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Heston model

Heston model

» European ATM call options with maturity 7 = 0.5
» model Delta (delta),

Stefano Herzel Dynamic Strategies in Affine Models



Heston model

Heston model

» European ATM call options with maturity 7 = 0.5
» model Delta (delta),
» Black-Scholes Delta with expected volatility (deltabsev),
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Heston model

Heston model

| 2
>
'S
>

European ATM call options with maturity T = 0.5
model Delta (delta),
Black-Scholes Delta with expected volatility (deltabsev),

variance-optimal in continuous time (6*),
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Heston model

Heston model

| 2
>
'S
>
>

European ATM call options with maturity T = 0.5
model Delta (delta),

Black-Scholes Delta with expected volatility (deltabsev),
variance-optimal in continuous time (6*),

local optimal (beta).
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Heston model

Hedge ratios as functions of p
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Heston model

Moments in Heston model

M(T) = {(uv1, 1) € R? | E ["YTH2VT] < o0}
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Heston model
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Heston model

Variances of hedging strategies as functions of p

—+—delta
sl —+— deltabsey 4
—o—g

4 . L L . L L L L L
-1 08 06 04 02 0 02 04 0B 08 1

Stefano Herzel Dynamic Strategies in Affine Models



Heston model

Sensitiveness of variance as functions of p
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Heston model

Sensitiveness of variance as functions of p
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Heston model

Variances as functions of the number of hedging intervals
N
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Heston model

Conclusions

» An efficient way to compute moments of hedging errors of
different type of strategies for claims w.i.r. and for a wide
class of models
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Conclusions
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» A measure for the performances of hedging strategies in
different settings, for instance under model mispecification
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Heston model

Conclusions

» An efficient way to compute moments of hedging errors of
different type of strategies for claims w.i.r. and for a wide
class of models

» A measure for the performances of hedging strategies in
different settings, for instance under model mispecification

» In the paper: Proofs, formulas, CIR, comparisons to Monte
Carlo...
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» An efficient way to compute moments of hedging errors of
different type of strategies for claims w.i.r. and for a wide
class of models

» A measure for the performances of hedging strategies in
different settings, for instance under model mispecification

» In the paper: Proofs, formulas, CIR, comparisons to Monte
Carlo...

» F. Angelini, S. Herzel, Evaluating Discrete Dynamic Strategies
in Affine Models
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Heston model

Conclusions

» An efficient way to compute moments of hedging errors of
different type of strategies for claims w.i.r. and for a wide
class of models

» A measure for the performances of hedging strategies in
different settings, for instance under model mispecification

» In the paper: Proofs, formulas, CIR, comparisons to Monte
Carlo...

» F. Angelini, S. Herzel, Evaluating Discrete Dynamic Strategies
in Affine Models

» stefano.herzel@uniroma2.it
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Heston model

Technical Conditions

21, € UNR? = 5, € L*(P)
DFS (2003)
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Heston model

Technical Conditions

" 21, c UNRY = S, € L*(P)
DFS (2003)
>
2R1, € UNRY
= E [ezRyT} < 0
= H e L*(P)
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Heston model

Previous results

» Hubalek, Kallsen and Krawczyk (2006), compute optimal
variance in Levy case, discrete and continuous time

Stefano Herzel Dynamic Strategies in Affine Models



Heston model

Previous results

» Hubalek, Kallsen and Krawczyk (2006), compute optimal
variance in Levy case, discrete and continuous time

» Cerny, Kallsen (2008), Kalssen, Pauwels (2009) and Kallsen,
Vierthauer (2009) compute optimal variance in SV models
(Heston) in continuous time
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Previous results

» Hubalek, Kallsen and Krawczyk (2006), compute optimal
variance in Levy case, discrete and continuous time

» Cerny, Kallsen (2008), Kalssen, Pauwels (2009) and Kallsen,
Vierthauer (2009) compute optimal variance in SV models
(Heston) in continuous time

» Angelini, Herzel (2009) compute variance for sub-optimal
strategies in Levy processes in discrete time
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Previous results

» Hubalek, Kallsen and Krawczyk (2006), compute optimal
variance in Levy case, discrete and continuous time

» Cerny, Kallsen (2008), Kalssen, Pauwels (2009) and Kallsen,
Vierthauer (2009) compute optimal variance in SV models
(Heston) in continuous time

» Angelini, Herzel (2009) compute variance for sub-optimal
strategies in Levy processes in discrete time

> Kalssen et al. (2009) compute variance for sub-optimal
strategies in Levy processes in continuous time
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Heston model

» The price at time t

R+ioco .
P:; = / exp (a(zl,,t, T)+ B(z1,,t, T) - X;) p(2)dz

R—ioco

SV model ‘B(zly7 t, T)= (z,ﬁg(zly7 t, T))
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Heston model

» The price at time t

R+ioco
Pt:/ ’ exp( a(zly,t, T)—}—ﬂ(zly,t T)- Xt) p(z)dz

R—ioco

SV model 3(z1,,t, T) = (z, B2(z1,,t, T))
» The Delta at time t

R+ico _
A = / ze Yeexp (a(zly,t, T)+ B(z1y,t, T) - X¢) p(z)dz
R

—ioco

R+ico _
= /R zexp (a(z1y,t, T) + (B(z1,,t, T) — 1,) - X¢) p(z)dz

—ioco
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