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Introduction

Classical Merton problem in dynamic portfolio optimization

> Stock returns &t = pdt + odW,

risk-free interest rate r
» Maximize E [U(X7)]
for power utility U(x) = %, 0<1 6+#0
» Optimal proportion of wealth invested in risky asset

h() — 1 p—r

1_9¢ 5 = const
- g

h(© is a key building block of optimal strategies in more
complicated models
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Portfolio Optimization and Drift

» Sensitive dependence of investment strategies on drift of assets
» Drifts are hard to estimate empirically

need data over long time horizons
(other than volatility estimation)

» Problems with stationarity: drift is not constant
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Implications

» Academic literature: drift is driven by unobservable factors
Models with partial information, apply filtering techniques
Bjork, Davis, Landén (2010)
» Linear Gaussian models
Lakner (1998), Nagai, Peng (2002), Brendle (2006), ...

» Hidden Markov models

Sass, Haussmann (2004), Rieder, Bauerle (2005),
Nagai, Rungaldier (2008), Sass, W. (2010),...
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Implications
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Bjork, Davis, Landén (2010)
» Linear Gaussian models
Lakner (1998), Nagai, Peng (2002), Brendle (2006), ...

» Hidden Markov models

Sass, Haussmann (2004), Rieder, Bauerle (2005),
Nagai, Rungaldier (2008), Sass, W. (2010),...

» Practitioners use static Black-Litterman model

Apply Bayesian updating to combine
subjective views  (such as “asset 1 will grow by 5%")
with empirical or implied drift estimates
» Present paper combines the two approaches
consider dynamic models with partial observation
including expert opinions
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Financial Market Model

(2,G = (Gt hepo,1):P) filtered probability space (full information)

Bond

Stocks

Factor process

SP=1

prices Sy = (S¢,...,S")', returns dR! = d?sltl
dRy = p(Yy)dt + o dW, t
w(Ye) € R" drift, o € R"™" volatility

W; n-dimensional G-Brownian motion

Y: finite-state Markov chain, independent of W;
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Financial Market Model

(2,G = (Gt hepo,1):P) filtered probability space (full information)

Bond

Stocks

Factor process

SP=1

prices Sy = (S¢,...,S")', returns dR! = d?sltl
dRy = p(Yy)dt + o dW, t
w(Ye) € R" drift, o € R"™" volatility

W; n-dimensional G-Brownian motion

Y. finite-state Markov chain, independent of W;
state space {e1,...,eq}, unitvectors in RY

states of drift u(Y:;) = MY; where M = (u1,...,uq4)
generator matrix Q

initial distribution (7%,...,79)"
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Investor Information

Investor is not informed about factor process Y;, he only observes

Stock prices St or equivalently stock returns R;

Expert opinions ~ own view about future performance
news, recommendations of analysts or rating agencies

= Model with partial information
Investor needs to “learn” the drift from observable quantities.
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Expert Opinions

Modelled by marked point process | = (T, Zp) ~ 1(dt,dz)
» At random points in time T, ~ Poi()\) investor observesr.v. Z, € Z
» Z, depends on current state Y1,, density f(Yr,,2)
(Zn) cond. independent given 7Y =o(Ys:s € [0,T])
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» At random points in time T, ~ Poi()\) investor observesr.v. Z, € Z
» Z, depends on current state Y1,, density f(Yr,,2)

(Zn) cond. independent given 7Y =o(Ys:s € [0,T])

Examples

» Absolute view: Zj,
The view

H(YTn) + 0c€n, (5n)
“S will grow by 5%”
0. models confidence of investor

ii.d. N(0,1)
is modelled by Z, =0.05

- %7
= X2
5 P
| « ) - ]
1 1 1 1 1 x
T, T, T, Ty Ts Ts
» Relative view (2 assets):

Zn = pa(YT,) — po(YT,) + 0cen
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Expert Opinions

Modelled by marked point process | = (T, Zp) ~ 1(dt,dz)

» At random points in time T, ~ Poi()\) investor observesr.v. Z, € Z
» Z, depends on current state Y1,, density f(Yr,,2)

(Zn) cond. independent given 7Y =o(Ys:s € [0,T])
Examples

» Absolute view: Zn = pu(Yt,) + 0zen, (en) 1id. N(O,1)
The view “S will grow by 5%” is modelled by Z, = 0.05
0. models confidence of investor

)(22

xXZ,

drift

) - ]
1 1 1 1 1 x
T, T, T, Ty Ts Ts
» Relative view (2 assets): Z,

lL].(\ﬁTn) - ALZ(\(1_n) + E;Effn

Investor filtration T = (F) with 7t = o(Ry: u <t; (Th,Zn): Th <t)
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Optimization Problem

Admissible Strategies described via portfolio weights htl, ...,h!
H={(h)epory | e € R, fo [Ie][2 < oo,
h is F-adapted }
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Optimization Problem

Admissible Strategies described via portfolio weights h}, ...,h!

Wealth

Utility function

Reward function

Value function

H = {("t)cpo) | ht € R, foT [Ihe]]? < oo,

h is F-adapted }
dX" = X"h{ (p(Ye)dt +odW; ), X =xo
U(x) = %, power utility, 6 € (—o0,1)\ {0}
U(x) =log(x) logarithmic utility (0 = 0)
v(t,x,h) = Etx[U(XD) ] for heH

V(t,x) =sup v(t,x,h)
heH

Find optimal strategy h* € H such that V(0,Xg) = v(0,Xo, h*) J
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Filtering and Reduction to Full Information

HMM Filtering - only return observation
Filter pf = P(Ye =&l F)

—

u(Ye) = E[u(Y)|R] = u(pt) = _ilpi Hi
=
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Filtering and Reduction to Full Information

HMM Filtering - only return observation
Filter pf = P(Ye =&l F)

u(Ye) == E[u(Yo)lR] = p(p) = _ilpi Hj
iz

Innovation process Wt = fo YS )ds ) isanF-BM
HMM filter Liptser, Shiryaev (1974), Wonham (1965), Elliot (1993)
pg =

d
dpf = ) Q¥pjdt +ac(p) dW;
=1

d
where ag(p) = p"afl(uk—Zp"uj)
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Filtering and Reduction to Full Information (cont.)

HMM Filtering - including expert opinions

Extra information has no impact on filter p; between ‘information dates’ T,
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Filtering and Reduction to Full Information (cont.)

HMM Filtering - including expert opinions

Extra information has no impact on filter p; between ‘information dates’ T,
Bayesian updating att =Tp:

pk oc pk f(ex,Zn) recall: f(Y,,2z) is density of Z, given Y,

n

d _
with normalizer " p} _f(ej,Zn) =: f(pr,—,Zn)
=1

HMM filter

k K
Ppo = 7
d

dpf = Y Q*pldt + ay(p) dWi + pf_ / (ff(ﬁfk’”—l)v(dt x dz)

< )

Compensated measure  ~(dtxdz) := I(dt xdz) — A\dt Z P f(ex,z

compensator
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Filtering: Example

Drift
0.4
=
| |
02—
| I}
e] ; 2
Stock Price
1.64 eXp(jf:H(Ys)ds)‘
1.4
1
‘ I}
’ 1
time t
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Filtering: Example

Drift
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Filtering: Example
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Filtering: Example

Drift
0.4+

;
;

Drift TN %},,4,\/
HMM Filter
-0.2 % z, ¥
Updated Filter ‘ %
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Stock Price
16H exp(f nev ) ds)
Stock Price St
1.4
1.2
1
L |
o} 1 >
time t

11/18



Filtering and Reduction to Full Information (cont.)

Consider augmented state process (X, pt)

Wealth dXn = XM hT ( p(Ye) dt+odWy), XD =x
————
=M p;
d o —
Filter dp = > Q¥pdt + ak(pe) dW,

=1

ot (108 - 1)atarc ). g =
zZ
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Filtering and Reduction to Full Information (cont.)

Consider augmented state process (X, pt)

Wealth dXn = XM hT ( p(Ye) dt+odWy), XD =x
————
=M p;
d o —
Filter dpf = > Qkpldt + ax(pr) d W,
=1

ot (108 - 1)atarc ). g =
zZ

Reward function v (t,x,p,h) = Eqxp[ UX") ] for heH

Value function V(t,x,p) =sup v(t,x,p,h)
her

Find h* € H(0) suchthat V(0,Xo,7) = V(0,Xo,,h*) J
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Solution for Power Utility

Risk-sensitive control problem (Nagai & Runggaldier (2008))
T . (92 T
Let zM:=exp {9/0 hlcdWs — 7/0 hZaoThsds}, assume E[Z"] =1

Change of measure:  PM"(A) =E[Z"1s] for Ac Fr
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Solution for Power Utility

Risk-sensitive control problem (Nagai & Runggaldier (2008))
h T . (92 T
Let Z":=exp {9/ hlcdWs — 7/ hZaoThsds}, assume E[Z"] =1
0 0
Change of measure:  PM"(A) =E[Z"1s] for Ac Fr
Reward function

A xf . T "
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Solution for Power Utility

Risk-sensitive control problem (Nagai & Runggaldier (2008))

T g2 T
Let zM:=exp {0/ hlcdWs — %/ hZaoThsds}, assume E[Z"] =1
0 0

Change of measure:  PM"(A) =E[Z"1s] for Ac Fr
Reward function

A xf . T "
EueplUO)] = 7 Elp[exp{ — [ bO(ps,hejas )

=:v(t,p,h) independent of x

—e(hTMp - #hTaaTh)

where b (p, h)

Admissible strategies ~ A="H n { (h)|E[Z"] =1}
Value function V(t,p) =sup v(t,p,h)
heA

Find h* € A suchthat V(0,r) = v(0,x,h*) J
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HJB-Equation

Vi(t,p) + sup { £V (t,p) — b@(p, MV (t, p) }
heR"

I
o

|
=

terminal condition V(T,p)

where LM generator of the filter process p; under measure P"
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I
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HJB-Equation

Vit p) + sup { £V (t,p) — b (p, M)V (t, p) |

heRn

I
o

I
[N

terminal condition V(T,p)

where LM generator of the filter process p; under measure P"

Optimal Strategy

W =h(Lp) = Fgegloe ) {Mp+ s azak ) Vi (t.p) }

myopic strategy + correction

Certainty equivalence principle does not hold
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HJB-Equation (cont.)

Plugging in h* into the HIB equation and substituting V = G1~¢ we derive a

Transformed HIB-Equation for G = G(t, p)

G + St[A (MAR)D’G] + BT(D)VG + C(p)G

GL(t p+A(p, ) -G (t.p) ¢ _
+ = 6/ (L. p) f(p,z)dz = 0,

The functions A, B, C, A are defined in the paper.
Note that the equation has a linear diffusion part  but

nonlinear integral term
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Policy Improvement

Starting approximation is the myopic strategy ht(o) = ﬁ(aaT)*lMpt

The corresponding reward function is

i
VO(t,p) == v(t,p,h®) = Et7p[exp<—/ b (p”,h”)ds ) |
t
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Policy Improvement

Starting approximation is the myopic strategy ht(o) = ﬁ(aaT)*lMpt
The corresponding reward function is
VO(t,p) := v(t,p,h®) = Eep | exp - /tT b® (pt” h{)ds) ]
Consider the following optimization problem
max { £V O)(t, p) — b@(p, h)v (¢, p)}

with the maximizer
d

1 _
HOEP) =HOP) + (g @) o)V p) J
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Policy Improvement

Starting approximation is the myopic strategy ht(o) = ﬁ(aaT)*lMpt

The corresponding reward function is
VO(t,p) = v(t,p,h@) = [exp ( - /tT b®(ph®, hg°>)ds)]
Consider the following optimization problem
max { £V O)(t, p) — b@(p, h)v (¢, p)}

with the maximizer

H0,9) =HOP) + gy @) V) J

For the corresponding reward function V3 (t, p) := v(t,p,h®) it holds

Lemma ( h isanimprovement of h(® )
v®(t,p) > vOt,p)
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Numerical Results

Drift
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Numerical Results

Drift
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Numerical Results

Drift
0.4r :

AN N Y /\W\N’I
™ AT 7o Q
Drift i :
<z, | x :
Filter | : : :

drift

-0.2H

‘ x

Correction h" - K(®

correction

1 2
time t

For t =T, : nearly fullinformation =— correction ~ 0 /
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