Portfolio optimization under partial information with expert opinions

Ralf Wunderlich

Zwickau University of Applied Sciences

Joint work with Rüdiger Frey (Leipzig, Germany)

Abdelali Gabih (Marrakech, Morocco)

6th World Congress of the Bachelier Finance Society, Toronto, June 22 - 26, 2010

Introduction

Classical Merton problem in dynamic portfolio optimization

- ► Stock returns $\frac{dS_t}{S_t} = \mu dt + \sigma dW_t$ risk-free interest rate r
- ► Maximize $E[U(X_T)]$ for power utility $U(x) = \frac{x^{\theta}}{\theta}, \ \theta < 1, \ \theta \neq 0$
- Optimal proportion of wealth invested in risky asset

$$h_t^{(0)} = \frac{1}{1-\theta} \frac{\mu - r}{\sigma^2} = \text{const}$$

 $h^{(0)}$ is a key building block of optimal strategies in more complicated models

Portfolio Optimization and Drift

- Sensitive dependence of investment strategies on drift of assets
- Drifts are hard to estimate empirically need data over long time horizons (other than volatility estimation)
- Problems with stationarity: drift is not constant

Implications

- Academic literature: drift is driven by unobservable factors Models with partial information, apply filtering techniques Björk, Davis, Landén (2010)
 - ► Linear Gaussian models
 Lakner (1998), Nagai, Peng (2002), Brendle (2006), ...
 - Hidden Markov models
 Sass, Haussmann (2004), Rieder, Bäuerle (2005),
 Nagai, Rungaldier (2008), Sass, W. (2010),...

Implications

- Academic literature: drift is driven by unobservable factors
 Models with partial information, apply filtering techniques
 Björk, Davis, Landén (2010)
 - ► Linear Gaussian models
 Lakner (1998), Nagai, Peng (2002), Brendle (2006), ...
 - Hidden Markov models
 Sass, Haussmann (2004), Rieder, Bäuerle (2005),
 Nagai, Rungaldier (2008), Sass, W. (2010),...
- Practitioners use static Black-Litterman model Apply Bayesian updating to combine subjective views (such as "asset 1 will grow by 5%") with empirical or implied drift estimates

Implications

- Academic literature: drift is driven by unobservable factors Models with partial information, apply filtering techniques Björk, Davis, Landén (2010)
 - ► Linear Gaussian models Lakner (1998), Nagai, Peng (2002), Brendle (2006), ...
 - Hidden Markov models
 Sass, Haussmann (2004), Rieder, Bäuerle (2005),
 Nagai, Rungaldier (2008), Sass, W. (2010),...
- Practitioners use static Black-Litterman model
 Apply Bayesian updating to combine
 subjective views (such as "asset 1 will grow by 5%")
 with empirical or implied drift estimates
- Present paper combines the two approaches consider dynamic models with partial observation including expert opinions

Financial Market Model

 $(\Omega, \mathbb{G} = (\mathcal{G}_t)_{t \in [0,T]}, P)$ filtered probability space (full information)

Bond

 $S_t^0 = 1$

Stocks

prices $S_t = (S_t^1, \dots, S_t^n)^{\mathsf{T}}$, returns $dR_t^i = \frac{dS_t^i}{S^i}$

 $dR_t = \mu(Y_t) dt + \sigma dW_t$

 $\mu(Y_t) \in \mathbb{R}^n$ drift, $\sigma \in \mathbb{R}^{n \times n}$ volatility

 W_t *n*-dimensional \mathbb{G} -Brownian motion

Factor process Y_t finite-state Markov chain, independent of W_t

Financial Market Model

$$(\Omega, \mathbb{G} = (\mathcal{G}_t)_{t \in [0,T]}, P)$$
 filtered probability space (full information)

$$S_t^0 = 1$$

Stocks

prices
$$S_t = (S_t^1, \dots, S_t^n)^{\top}$$
, returns $dR_t^i = \frac{dS_t^i}{S_t^i}$ $dR_t = \mu(Y_t) dt + \sigma dW_t$ $\mu(Y_t) \in \mathbb{R}^n$ drift, $\sigma \in \mathbb{R}^{n \times n}$ volatility W_t n -dimensional \mathbb{G} -Brownian motion

Factor process

 Y_t finite-state Markov chain, independent of W_t state space $\{e_1,\ldots,e_d\}$, unit vectors in \mathbb{R}^d states of drift $\mu(Y_t)=MY_t$ where $M=(\mu_1,\ldots,\mu_d)$ generator matrix Q initial distribution $(\pi^1,\ldots,\pi^d)^\top$

Investor Information

Investor is not informed about factor process Y_t , he only observes

Stock prices S_t or equivalently stock returns R_t

Expert opinions own view about future performance

news, recommendations of analysts or rating agencies

 \implies Model with **partial information**.

Investor needs to "learn" the drift from observable quantities.

Expert Opinions

Modelled by marked point process $I = (T_n, Z_n) \sim I(dt, dz)$

- ▶ At random points in time $T_n \sim \text{Poi}(\lambda)$ investor observes r.v. $Z_n \in \mathcal{Z}$
- ▶ Z_n depends on current state Y_{T_n} , density $f(Y_{T_n}, z)$ (Z_n) cond. independent given $\mathcal{F}_T^Y = \sigma(Y_s : s \in [0, T])$

Expert Opinions

Modelled by marked point process $I = (T_n, Z_n) \sim I(dt, dz)$

- ▶ At random points in time $T_n \sim Poi(\lambda)$ investor observes r.v. $Z_n \in \mathcal{Z}$
- ▶ Z_n depends on current state Y_{T_n} , density $f(Y_{T_n}, z)$ (Z_n) cond. independent given $\mathcal{F}_T^Y = \sigma(Y_s : s \in [0, T])$

Examples

Absolute view: $Z_n = \mu(Y_{T_n}) + \sigma_{\varepsilon} \varepsilon_n$, (ε_n) i.i.d. N(0,1)The view "S will grow by 5%" is modelled by $Z_n = 0.05$ σ_{ε} models confidence of investor

▶ Relative view (2 assets): $Z_n = \mu_1(Y_{T_n}) - \mu_2(Y_{T_n}) + \widetilde{\sigma}_{\varepsilon} \varepsilon_n$

Expert Opinions

Modelled by marked point process $I = (T_n, Z_n) \sim I(dt, dz)$

- ▶ At random points in time $T_n \sim \text{Poi}(\lambda)$ investor observes r.v. $Z_n \in \mathcal{Z}$
- ▶ Z_n depends on current state Y_{T_n} , density $f(Y_{T_n}, z)$ (Z_n) cond. independent given $\mathcal{F}_T^Y = \sigma(Y_s : s \in [0, T])$

Examples

Absolute view: $Z_n = \mu(Y_{T_n}) + \sigma_{\varepsilon}\varepsilon_n$, (ε_n) i.i.d. N(0,1) The view "S will grow by 5%" is modelled by $Z_n = 0.05$ σ_{ε} models confidence of investor

▶ Relative view (2 assets): $Z_n = \mu_1(Y_{T_n}) - \mu_2(Y_{T_n}) + \widetilde{\sigma}_{\varepsilon} \varepsilon_n$

Investor filtration $\mathbb{F} = (\mathcal{F}_t)$ with $\mathcal{F}_t = \sigma(R_u : u \leq t; (T_n, Z_n) : T_n \leq t)$

Optimization Problem

Admissible Strategies described via portfolio weights h_t^1, \ldots, h_t^n $\mathcal{H} = \{(h_t)_{t \in [0,T]} \mid h_t \in \mathbb{R}^n, \int_0^T ||h_t||^2 < \infty, h \text{ is } \mathbb{F}\text{-adapted } \}$

Optimization Problem

Admissible Strategies described via portfolio weights
$$h_t^1, \dots, h_t^n$$

$$\mathcal{H} = \{(h_t)_{t \in [0,T]} \mid h_t \in \mathbb{R}^n, \int_0^T ||h_t||^2 < \infty,$$

$$h \text{ is } \mathbb{F}\text{-adapted } \}$$
 Wealth
$$dX_t^h = X_t^h h_t^\top \left(\mu(Y_t) dt + \sigma dW_t \right), \quad X_0^h = x_0$$
 Utility function
$$U(x) = \frac{x^\theta}{\theta}, \quad \text{power utility,} \quad \theta \in (-\infty,1) \setminus \{0\}$$

 $U(x) = \log(x)$ logarithmic utility $(\theta = 0)$

Optimization Problem

Admissible Strategies described via portfolio weights h_t^1, \ldots, h_t^n $\mathcal{H} = \{(h_t)_{t \in [0,T]} \mid h_t \in \mathbb{R}^n, \int_0^T ||h_t||^2 < \infty,$

 $h ext{ is } \mathbb{F} ext{-adapted}$

Wealth $dX_t^h = X_t^h h_t^\top (\mu(Y_t) dt + \sigma dW_t), \quad X_0^h = x_0$

Utility function $U(x) = \frac{x^{\theta}}{\theta}$, power utility, $\theta \in (-\infty, 1) \setminus \{0\}$

 $U(x) = \log(x)$ logarithmic utility $(\theta = 0)$

Reward function $v(t, x, h) = E_{t,x}[U(X_T^h)]$ for $h \in \mathcal{H}$

Value function $V(t,x) = \sup_{h \in \mathcal{H}} v(t,x,h)$

Find optimal strategy $h^* \in \mathcal{H}$ such that $V(0, x_0) = v(0, x_0, h^*)$

HMM Filtering - only return observation

$$\rho_t^k := P(Y_t = e_k | \mathcal{F}_t)$$

$$\widehat{\mu(\mathbf{Y}_t)} := E[\mu(\mathbf{Y}_t)|\mathcal{F}_t] = \mu(\mathbf{p}_t) = \sum_{j=1}^d \mathbf{p}_t^j \mu_j$$

HMM Filtering - only return observation

Filter

$$p_t^k := P(Y_t = e_k | \mathcal{F}_t)$$

$$\widehat{\mu(Y_t)} := E[\mu(Y_t) | \mathcal{F}_t] = \mu(p_t) = \sum_{i=1}^d p_t^i \mu_i$$

Innovation process

$$\widetilde{W}_t := \sigma^{-1}(\ R_t - \int_0^t \widehat{\mu(\mathsf{Y_s})} d\mathsf{s}\)$$
 is an $\mathbb{F} ext{-BM}$

HMM filter

Liptser, Shiryaev (1974), Wonham (1965), Elliot (1993)

$$p_0^k = \pi^k$$

$$dp_t^k = \sum_{j=1}^d Q^{jk} p_t^j dt + a_k (p_t)^T d\widetilde{W}_t$$

where
$$a_k(p) = p^k \sigma^{-1} \left(\mu_k - \sum_{i=1}^d p^i \mu_i \right)$$

HMM Filtering - including expert opinions

Extra information has no impact on filter p_t between 'information dates' T_n

HMM Filtering - including expert opinions

Extra information has no impact on filter p_t between 'information dates' T_n

Bayesian updating at $t = T_n$:

$$p_{T_n}^k \propto p_{T_{n-}}^k f(e_k, Z_n)$$
 recall: $f(Y_{T_n}, z)$ is density of Z_n given Y_{T_n} with normalizer $\sum_{j=1}^d p_{T_{n-}}^j f(e_j, Z_n) =: \bar{f}(p_{T_{n-}}, Z_n)$

HMM Filtering - including expert opinions

Extra information has no impact on filter p_t between 'information dates' T_n

Bayesian updating at $t = T_n$:

$$p_{T_n}^k \propto p_{T_{n-}}^k f(e_k, Z_n)$$
 recall: $f(Y_{T_n}, z)$ is density of Z_n given Y_{T_n} with normalizer $\sum_{j=1}^d p_{T_n}^j f(e_j, Z_n) =: \overline{f}(p_{T_{n-}}, Z_n)$

HMM filter

$$p_0^k = \pi^k$$

$$dp_t^k = \sum_{j=1}^d Q^{jk} p_t^j dt + a_k(p_t)^T d\widetilde{W}_t + p_{t-1}^k \int_{\mathcal{Z}} \left(\frac{f(e_k, \mathbf{z})}{\overline{f}(p_{t-1}, \mathbf{z})} - 1 \right) \gamma(dt \times d\mathbf{z})$$

Compensated measure
$$\gamma(dt \times dz) := I(dt \times dz) - \lambda dt \sum_{k=1}^{d} p_{t-}^{k} f(e_k, z) dz$$

compensator

Consider augmented state process (X_t, p_t)

Wealth
$$dX_t^h = X_t^h \ h_t^\top \ (\underbrace{\widehat{\mu(Y_t)}}_{=Mp_t} \ dt + \sigma d\widetilde{W}_t), \qquad X_0^h = x_0$$
 Filter
$$dp_t^k = \sum_{j=1}^d Q^{jk} p_t^j dt + a_k(p_t)^\top d\widetilde{W}_t$$

$$+ p_{t-\int\limits_{\mathcal{Z}}^k} \left(\frac{f(e_k, z)}{\overline{f(p_{t-}, z)}} - 1 \right) \gamma (dt \times dz), \qquad p_0^k = \pi^k$$

Consider augmented state process (X_t, p_t)

Wealth
$$dX_t^h = X_t^h h_t^\top \underbrace{\left(\widehat{\boldsymbol{\mu}(\mathbf{Y_t})}\right)}_{=Mp_t} dt + \sigma d\widetilde{\boldsymbol{W}_t}, \qquad X_0^h = \mathbf{x}_0$$
Filter
$$dp_t^k = \sum_{j=1}^d \mathbf{Q}^{jk} p_t^j dt + a_k(p_t)^\top d\widetilde{\boldsymbol{W}_t}$$

$$+ p_{t-\int_{-\infty}^k \left(\frac{f(e_k, \mathbf{z})}{\bar{f}(p_{t-}, \mathbf{z})} - 1\right) \gamma(dt \times d\mathbf{z}), \qquad p_0^k = \pi^k$$

Reward function
$$v(t, x, p, h) = E_{t,x,p}[U(X_T^h)]$$
 for $h \in \mathcal{H}$

Value function
$$V(t, x, p) = \sup_{h \in \mathcal{H}} v(t, x, p, h)$$

Find
$$h^* \in \mathcal{H}(0)$$
 such that $V(0, x_0, \pi) = v(0, x_0, \pi, h^*)$

Solution for Power Utility

Risk-sensitive control problem (Nagai & Runggaldier (2008))

Let
$$Z^h := \exp\Big\{\theta\int_0^T h_{\mathbb{S}}^{\top}\sigma d\widetilde{W}_{\mathbb{S}} - \frac{\theta^2}{2}\int_0^T h_{\mathbb{S}}^{\top}\sigma\sigma^{\top}h_{\mathbb{S}}d\mathbb{S}\Big\}$$
, assume $E[Z^h] = 1$

Change of measure:
$$P^h(A) = E[Z^h 1_A]$$
 for $A \in \mathcal{F}_T$

Solution for Power Utility

Risk-sensitive control problem (Nagai & Runggaldier (2008))

Let
$$Z^h := \exp \left\{ \theta \int_0^T h_s^\top \sigma d\widetilde{W}_s - \frac{\theta^2}{2} \int_0^T h_s^\top \sigma \sigma^\top h_s ds \right\}$$
, assume $E[Z^h] = 1$

Change of measure: $P^h(A) = E[Z^h 1_A]$ for $A \in \mathcal{F}_T$

Reward function

$$E_{t,x,p}[U(X_T^h)] = \frac{x^{\theta}}{\theta} \underbrace{E_{t,p}^h \Big[\exp\Big\{ - \int_t^T b^{(\theta)}(p_s, h_s) ds \Big\} \Big]}_{\bullet}$$

=: v(t, p, h) independent of x

where
$$b^{(\theta)}(p,h) := -\theta \left(h^{\top} M p - \frac{1-\theta}{2} h^{\top} \sigma \sigma^{\top} h \right)$$

Solution for Power Utility

Risk-sensitive control problem (Nagai & Runggaldier (2008))

Let
$$Z^h := \exp\Big\{\theta\int_0^T h_s^{\top}\sigma d\widetilde{W}_s - \frac{\theta^2}{2}\int_0^T h_s^{\top}\sigma\sigma^{\top}h_s ds\Big\}$$
, assume $E[Z^h] = 1$

Change of measure: $P^h(A) = E[Z^h 1_A]$ for $A \in \mathcal{F}_T$

Reward function

$$E_{t,x,p}[U(X_T^h)] = \frac{x^{\theta}}{\theta} \underbrace{E_{t,p}^h \Big[\exp\Big\{ - \int_t^T b^{(\theta)}(p_s,h_s) ds \Big\} \Big]}$$

=: v(t, p, h) independent of x

where
$$b^{(\theta)}(p,h) := -\theta \left(h^{\top} M p - \frac{1-\theta}{2} h^{\top} \sigma \sigma^{\top} h \right)$$

Admissible strategies $A = \mathcal{H} \cap \{ (h_t) \mid E[Z^h] = 1 \}$

Value function
$$V(t,p) = \sup_{h \in A} v(t,p,h)$$

Find
$$h^* \in \mathcal{A}$$
 such that $V(0, \pi) = v(0, \pi, h^*)$

HJB-Equation

$$V_t(t,p) + \sup_{h \in \mathbb{R}^n} \left\{ \mathcal{L}^h V(t,p) - b^{(\theta)}(p,h) V(t,p) \right\} = 0$$

terminal condition $V(T,p) = 1$

where \mathcal{L}^h generator of the filter process p_t under measure P^h

HJB-Equation

$$V_t(t,p) + \sup_{h \in \mathbb{R}^n} \left\{ \mathcal{L}^h V(t,p) - b^{(\theta)}(p,h) V(t,p) \right\} = 0$$

terminal condition $V(T,p) = 1$

where \mathcal{L}^h generator of the filter process p_t under measure P^h

Optimal Strategy

$$h^* = h^*(t, p) = \frac{1}{(1-\theta)} (\sigma \sigma^\top)^{-1} \Big\{ Mp + \frac{1}{V(t, p)} \sigma \sum_{k=1}^{\sigma} a_k(p) V_{p^k}(t, p) \Big\}$$

HJB-Equation

$$V_t(t,p) + \sup_{h \in \mathbb{R}^n} \left\{ \mathcal{L}^h V(t,p) - b^{(\theta)}(p,h) V(t,p) \right\} = 0$$

terminal condition $V(T,p) = 1$

where \mathcal{L}^h generator of the filter process p_t under measure P^h

Optimal Strategy

$$h^* = h^*(t,p) = \frac{1}{(1-\theta)} (\sigma \sigma^\top)^{-1} \Big\{ Mp + \frac{1}{V(t,p)} \sigma \sum_{k=1}^d a_k(p) V_{p^k}(t,p) \Big\}$$

myopic strategy + correction

Certainty equivalence principle does not hold

HJB-Equation (cont.)

Plugging in h^* into the HJB equation and substituting $V = G^{1-\theta}$ we derive a

Transformed HJB-Equation for G = G(t, p)

$$G_{t} + \frac{1}{2}tr[A^{T}(p)A(p)D^{2}G] + B^{T}(p)\nabla G + C(p)G$$

$$+ \frac{\lambda}{1-\theta}\int_{\mathcal{Z}} \frac{G^{1-\theta}(t,p+\Delta(p,z)) - G^{1-\theta}(t,p)}{G^{-\theta}(t,p)} \,\overline{f}(p,z)dz = 0,$$

$$G(T,p) = 1,$$

The functions A, B, C, Δ are defined in the paper.

Note that the equation has a linear diffusion part but nonlinear integral term.

Policy Improvement

Starting approximation is the myopic strategy $h_t^{(0)} = \frac{1}{1-\theta} (\sigma \sigma^{\top})^{-1} M p_t$ The corresponding reward function is

$$V^{(0)}(t,p) := v(t,p,h^{(0)}) = E_{t,p} \Big[\exp \Big(- \int_t^T b^{(heta)}(p_s^{h^{(0)}},h_s^{(0)}) ds \Big) \Big]$$

Policy Improvement

Starting approximation is the myopic strategy $h_t^{(0)} = \frac{1}{1-\theta} (\sigma \sigma^{\top})^{-1} M p_t$ The corresponding reward function is

$$V^{(0)}(t,p) := v(t,p,h^{(0)}) = E_{t,p} \Big[\exp \Big(- \int_{t}^{T} b^{(\theta)}(p_s^{h^{(0)}},h_s^{(0)}) ds \Big) \Big]$$

Consider the following optimization problem

$$\max_{h} \left\{ \mathcal{L}^{h} V^{(0)}(t, p) - b^{(\theta)}(p, h) V^{(0)}(t, p) \right\}$$

with the maximizer

$$h^{(1)}(t,p) = h^{(0)}(t,p) + \frac{1}{(1-\theta)V^{(0)}(t,p)} (\sigma^{\top})^{-1} \sum_{k=1}^{a} a_k(p) V_{p^k}^{(0)}(t,p)$$

Policy Improvement

Starting approximation is the myopic strategy $h_t^{(0)} = \frac{1}{1-\theta} (\sigma \sigma^{\top})^{-1} M p_t$

The corresponding reward function is

$$V^{(0)}(t,p) := v(t,p,h^{(0)}) = E_{t,p} \Big[\exp\Big(- \int_t^T b^{(\theta)}(p_s^{h^{(0)}},h_s^{(0)}) ds \Big) \Big]$$

Consider the following optimization problem

$$\max_{h} \left\{ \mathcal{L}^{h} V^{(0)}(t, p) - b^{(\theta)}(p, h) V^{(0)}(t, p) \right\}$$

with the maximizer

$$h^{(1)}(t,p) = h^{(0)}(t,p) + \frac{1}{(1-\theta)V^{(0)}(t,p)} (\sigma^{\top})^{-1} \sum_{k=1}^{a} a_k(p) V_{p^k}^{(0)}(t,p)$$

For the corresponding reward function $V^{(1)}(t,p) := v(t,p,h^{(1)})$ it holds

Lemma ($h^{(1)}$ is an improvement of $h^{(0)}$)

$$V^{(1)}(t,p) \geq V^{(0)}(t,p)$$

Numerical Results

Numerical Results

Numerical Results

For $t = T_n$: nearly full information \implies correction ≈ 0