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Preamble

Theorem (Eckart-Young, 1936)
Assume A € R"™ "\ Sing. Then
1
d|St(A, Slng) = W = maX{(S . 6BRn g ABRn}.
Theorem (distance to rank-deficiency)
Assume A € R™*" js of rank m < n. Then
dist(A,X) = max{d : Brm C ABRn}
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4] Afl

" “max min{|[x]|: Ax = v}
vEBRm

Y = rank-deficient matrices.
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Proof of distance to rank-deficiency Theorem

Alternative
AceYody#£0,ATy=0.
Norm-duality
AT = i D Ax =
|A7H" = max min{x] : Ax = v}

= max max{HyH ATy du= 0} = AT
uEBRn

Rank-one construction
Find v € R™ and u € R" such that

A+w' €Y.



Theme

Extensions of the Eckart-Young Theorem:

@ From linear systems of equations to linear systems of
constraints

e From unstructured (arbitrary) perturbations to structured
(e.g., sparse) perturbations

@ Connection with “best-conditioned” solutions

Why does this matter?
@ Distance to ill-posedness leads to a notion of condition
number for optimization (Renegar)
e Conditioning is related to accuracy and performance of
algorithms

@ Work along these lines by: Belloni, Cheung, Cucker, Dunagan,
Epelman, Filipowski, Freund, Renegar, Vempala, etc.



From linear equations to linear constraints

Notice:
Given A € R™" with m < n, we have A ¢ ¥ < AR" = R™.

Equivalently, A ¢ ¥ if and only if Ax = b has a solution for all
beR"

How do we extend this to constraint systems?

Assume K C R" is a closed convex cone (e.g., K = R).
Given A € R™*" with m < n consider

Ax=b, x € K (e.g., Ax=b, x >0)

and
c—ATycK* (eg, ATy <¢)

for be R™ c e R".



Well-posed and ill-posed matrices

Throughout this talk:

Assume K C R" is a closed convex cone (e.g., K =R') and
m < n.

Define
P :={AcR™": AK =R"},
D:={AcR™": ATR™ + K* = R"}.
Notice

@ Ac P < Ax = b,x € K has a solution for all b € R™
@ Ac D< c— ATy € K* has a solution for all c € R”

lll-posed instances

Y :=R™"\ (PUD).



Theorem (Renegar, 1995)
(a) IfAc P then

dist(A, X) = max{d : 6Brm C A(Br» N K)}.
(b) If A€ D then

dist(A, X) = max{6 : 0Brn C ATBgm + K*}.



A more general setting: sublinear mappings

Definition
F : R" = R™ is sublinear if graph(F) = {(x,y) :y € F(x)} is a
convex cone. In that case

[FII” :== sup ir;f{HyH 1y € F(x)}.

xEBgn

Theorem (Lewis, 1998)

Assume F : R" = R™ s a sublinear mapping with closed graph
and F is surjective. Then

1

inf{||G|| : G € R™*", F + G is not surjective} = T



Conic systems: special case of sublinear mappings

Given K C R" and A € R™*" consider

Ax, if x e K
() otherwise

Fap(x) = {

Then A € P < Fap surjective. Renegar's distance Theorem (a)
follows.

Similarly, consider
Fap(y) = ATy + K*.

Then A € D & Fap surjective. Renegar's distance Theorem (b)
follows.



Structured distance to ill-posedness

Observe

@ Previous distance theorems assume unstructured (arbitrary)
data perturbations.

@ Often data perturbations are restricted to some specific
structure, e.g., sparsity or slack variables.

@ Ignoring such structure may lead to substantial
underestimation of the sensible distance to ill-posedness.



Structured distance to ill-posedness

Example
Take K =R and

0r -1 0 --- O
o 01 -1 --- 0
A= | . . _ .| €eP
o 0 --- 01 -1
Unstructured distance to ill-posedness = (0.1)"!
Structured (sparse) distance = 0.1



Single block structure

Suppose we are only allowed to perturb a block of A: Assume
k<m, £ <nand put

s {8 9 er).

Proposition (P. 1998)
Assume A € P. Then

dista(A,X) = max{d : IBrx C {Ax:x € K, x1.0 € Bpe}}
- 1
~ max min{||xg.¢|]| : Ax = v,x € K}
VGB]Rk
1
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Proof of single block-structured distance Proposition

Alternative
AdPeIy#£0ATy € K~
Norm-duality
“IATYH™" = max min{||x.e|| : Ax = v,x € K}
veEB  «

R

_ r’gﬁx maX{H}/l:kH ZAT_)/+ = K*} — “||A_T||+”.
u

RE

Rank-one construction

Find v € RY and u € R* such that

vul 0

av |y o er



Sublinear mappings: special case of conic systems

Given a sublinear mapping F : R" = R, put

KF := graph(F) C R""™ and Af := [0 Im] € Rm*(ntm),

Observe
@ F surjective & AF € P
e For B € R™" F + B not surjective < Ar + [B 0] ¢ P.

Lewis's distance theorem then follows from P’s single
block-structured distance proposition for conic systems.



Multiple block structure
Suppose X; CR", Y; CR™, j=1,... k. Let

A:={B:B=> B, B cl(X;,Y)),,
Jj
and for B=),B; € A, let ||B||a := max; || Bj||.
Theorem (P. 2003)

Assume A € P. Then

dista(A, ¥) =
-1

sup |nf{maxH ad z>OAx—Zsz XGK}
VJGJB

Zj

Right-hand side: sort of “1/||A7L|".



Proof of multiple block-structured distance Theorem

Alternative
AdP e Iy£0 ATy € K~
Norm-duality
“IA7Y|™" = sup inf {max I 12> 0,Ax = szvj, x € K}
VJEBYJ X,z ! Zj
= sup sup{ min Hy’/” : ATy+Zuj € K*} = “||A_T||+”.
e, T o ]

Rank-k construction
Find v € Yj, uj € X;, j=1,..., k such that

A+ZVJ-UJT¢77.
J



Componentwise distance to singularity

Observation
Assume A € R™"\ Sing and B € R"*". Then

1
inf{|6| : A+ 0B € Sing} = ————.
po(+) is the real spectral radius:

po(M) := max{|A| : X is a real eigenvalue of M}.

(If M has no real eigenvalues, po(M) :=0.)



Componentwise distance to singularity

Theorem (Rohn, 1989)

Assume A € R" "\ Sing and E € {0,1}"*". Then

inf{d : 3B with |B| <JE,A+ B € Sing} =
1
maxshgz po(A_l.SlESz)7

max taken over signature matrices.
S e {—1,1}"*" is a signature matrix if |S| = I.

Rohn's Theorem can be recovered from multiple block-structured
distance Theorem.



Distance to ill-posedness and best-conditioned solutions

For the remaining of this presentation

Assume K = R, and given A € R™XN write A = [al a,,] .

Goffin-Cheung-Cucker's condition number

Assume a; #0, i =1,...,n. Define

aly 1
=L

3]

v(A) ;= max min
llyll=1j=1,....,n
Notice
e Ac D<= v(A)>0
e AcP<v(A)<O



Distance to ill-posedness and best-conditioned solutions

Geometric interpretation
When A € D, v(A) is a measure of “thickness” of the cone

{y:ATy >0}.
v(A) is also a measure of the “best-conditioned” solution to

ATy > 0.



Distance to ill-posedness and best-conditioned solutions

Theorem (Cheung & Cucker, 2001)
Assume a; #£0, i=1,...,n. Then

[v(A)| = inf{.max lla: = &l Ac Z}.

i=1,...,n ||2,H

Remark

@ This gives an identity between the best-conditioned solution
and distance to ill-posedness of the system of constraints.

@ The above distance theorem can be related to the
block-structured distance theorem: The right hand side is a
certain dista (A, X).



Stratified distance to ill-posedness

Can we restrict the distance to ill-posedness to X7

Motivation
@ When K = R", ¥ = rank-deficient matrices.

@ The set of ill-posed instances ¥ can be written as
Y=Y, 1UXL,U---UXjUXy

Y, = matrices with rank at most r.
e Given Ae ¥;\ ¥ 4,

diStzi(A, Z;_l) = O’,‘(A).

oi(A): i-th (smallest positive) singular value of A.



Stratified distance to ill-posedness

Consider again K =R

How can we stratify 2.7

Answer: Use a “canonical” partition Z(A) = {B, N} of {1,...

Proposition

Assume A € R™*". Then there exists a unique partition
BUN ={1,...,n} such that for some x € R", y € R™

Agxg =0, xg >0, ALy =0, Aly > 0.

Observe
e AcDeB=1)
e Ac P < N =0 and rank(A) = m.



Stratified distance to ill-posedness

Assume A € R™*" and Z(A) = {B, N}. Define

L= ker(AE) CR™ and L, =range(Ag) C R™.

If N # (), define
aly
vy(A) := max min ——.
veL Jjen |a]
Iyl=1
If B # (), define

-
3.
vg(A) = max min J—y
yely jeB | aj]]
IylI=1



Stratified distance to ill-posedness

Theorem (Cheung-Cucker-P., 2008)
For A € R™*"

vn(A) = min max 7“%‘ — 3
2(A)£P2(A) JEN Il
Ap=Ag
and
lve(A)| = min max 7”31 —ajl
P(A)£P(A) J€EB [l

An=An
ker(AL)DL



Conclusions

@ lll-posed matrices (for systems of constraints) are an extension
of rank-deficient matrices (for systems of equations)

@ The Eckart-Young distance Theorem and its proof extend to
the distance to ill-posedness

@ Similar distance theorems hold when restricted to certain
manifolds.

@ Relationships between distance to ill-posedness and
“best-conditioned” solutions



