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Introduction

Resultant: Has a system of polynomials a solution?

Here: n homogeneous polynomials in n variables
Canny (1987): Resultant ∈ PSPACE
What is the exact (boolean) complexity of this problem?
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Outline

1 Statement of the problem and upper bound

2 Resultant is NP-hard
. . . under randomized reduction
. . . under deterministic reduction
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Statement of the problem and upper bound

Definitions

Inputs:

I HNC: f1, . . . , fs ∈ C[X1, . . . ,Xn];
I H2NC: f1, . . . , fs ∈ C[X1, . . . ,Xn], homogeneous;
I H2N�

C : f1, . . . , fn ∈ C[X1, . . . ,Xn], homogeneous;
Questions:

I Does there exist (a1, . . . , an) ∈ C s.t. fi (ā) = 0 for all i?
I Homogeneous cases: ā 6= (0, . . . , 0)

Boolean versions HN, H2N, H2N�:

I Polynomials with integer coefficients
I Complex roots?

Resultant: H2N�
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Boolean versions HN, H2N, H2N�:
I Polynomials with integer coefficients

I Complex roots?

Resultant: H2N�

Bruno Grenet (LIP – ÉNS Lyon) Hardness of the resultant Toronto – Sept. 30, 2009 5 / 21



Statement of the problem and upper bound

Definitions

Inputs:
I HNC: f1, . . . , fs ∈ C[X1, . . . ,Xn];
I H2NC: f1, . . . , fs ∈ C[X1, . . . ,Xn], homogeneous;
I H2N�

C : f1, . . . , fn ∈ C[X1, . . . ,Xn], homogeneous;
Questions:

I Does there exist (a1, . . . , an) ∈ C s.t. fi (ā) = 0 for all i?
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Statement of the problem and upper bound

Upper bound

Theorem

Under Generalized Riemann Hypothesis, H2N� ∈ AM.

Koiran (1996): Under GRH, HN ∈ AM.
S: instance of H2N� (f1, . . . , fn ∈ Z[X1, . . . ,Xn]).
T : instance of HN with

I new variables Y1, . . . ,Yn

I new equation
n∑

i=1

XiYi = 1

(a1, . . . , an) ∈ Strue =⇒ (a1, . . . , an, 0, . . . , 0, 1/ai0 , 0, . . . , 0) ∈ Ttrue

(a1, . . . , an, b1, . . . , bn) ∈ Ttrue =⇒ ā 6= 0̄ =⇒ ā ∈ Strue

Bruno Grenet (LIP – ÉNS Lyon) Hardness of the resultant Toronto – Sept. 30, 2009 6 / 21



Statement of the problem and upper bound

Upper bound

Theorem

Under Generalized Riemann Hypothesis, H2N� ∈ AM.

Koiran (1996): Under GRH, HN ∈ AM.

S: instance of H2N� (f1, . . . , fn ∈ Z[X1, . . . ,Xn]).
T : instance of HN with

I new variables Y1, . . . ,Yn

I new equation
n∑

i=1

XiYi = 1

(a1, . . . , an) ∈ Strue =⇒ (a1, . . . , an, 0, . . . , 0, 1/ai0 , 0, . . . , 0) ∈ Ttrue

(a1, . . . , an, b1, . . . , bn) ∈ Ttrue =⇒ ā 6= 0̄ =⇒ ā ∈ Strue
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Resultant is NP-hard

Outline

1 Statement of the problem and upper bound

2 Resultant is NP-hard
. . . under randomized reduction
. . . under deterministic reduction
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Resultant is NP-hard

Lower bound

Theorem

H2N� is NP-hard.

3-SAT 6m Boolsys 6m H2N 6? H2N�

Randomized reduction: less polynomials (“less rows”)
Deterministic reduction: more variables (“more columns”)
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Resultant is NP-hard

Boolsys 6m H2N

Boolsys
Boolean variables
X1, . . . ,Xn

Equations
I Xi = True
I Xi = ¬Xj
I Xi = Xj ∨ Xk

H2N
Complex variables x0 and
x1, . . . , xn

Equations

x2
0 = x2

i for every i > 0 and
I (xi + x0)2 = 0
I (xi + xj)

2 = 0
I (xi + x0)2 = (xj + x0) · (xk + x0)

Remains to prove H2N 6 H2N�.
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Resultant is NP-hard . . . under randomized reduction

Outline

1 Statement of the problem and upper bound

2 Resultant is NP-hard
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Resultant is NP-hard . . . under randomized reduction

General idea

Decrease the number of polynomials

If f1, . . . , fs homogeneous of degree 2,

gi :=
s∑

j=1

αij fj , 1 6 i 6 n

If αij algebraically independent (over Q), then

∀x̄

∧
j

fj(x̄) = 0
∧
i

gi (x̄) = 0


Replace αij by random integers, and use Schwartz-Lippel Lemma to
conclude

Bruno Grenet (LIP – ÉNS Lyon) Hardness of the resultant Toronto – Sept. 30, 2009 11 / 21



Resultant is NP-hard . . . under randomized reduction

General idea

Decrease the number of polynomials
If f1, . . . , fs homogeneous of degree 2,

gi :=
s∑

j=1

αij fj , 1 6 i 6 n

If αij algebraically independent (over Q), then

∀x̄

∧
j

fj(x̄) = 0
∧
i

gi (x̄) = 0


Replace αij by random integers, and use Schwartz-Lippel Lemma to
conclude

Bruno Grenet (LIP – ÉNS Lyon) Hardness of the resultant Toronto – Sept. 30, 2009 11 / 21



Resultant is NP-hard . . . under randomized reduction

General idea

Decrease the number of polynomials
If f1, . . . , fs homogeneous of degree 2,

gi :=
s∑

j=1

αij fj , 1 6 i 6 n

If αij algebraically independent (over Q), then

∀x̄

∧
j

fj(x̄) = 0 =⇒
∧
i

gi (x̄) = 0



Replace αij by random integers, and use Schwartz-Lippel Lemma to
conclude

Bruno Grenet (LIP – ÉNS Lyon) Hardness of the resultant Toronto – Sept. 30, 2009 11 / 21



Resultant is NP-hard . . . under randomized reduction

General idea

Decrease the number of polynomials
If f1, . . . , fs homogeneous of degree 2,

gi :=
s∑

j=1

αij fj , 1 6 i 6 n

If αij algebraically independent (over Q), then

∀x̄

∧
j

fj(x̄) = 0 ⇐=
∧
i

gi (x̄) = 0



Replace αij by random integers, and use Schwartz-Lippel Lemma to
conclude

Bruno Grenet (LIP – ÉNS Lyon) Hardness of the resultant Toronto – Sept. 30, 2009 11 / 21



Resultant is NP-hard . . . under randomized reduction

General idea

Decrease the number of polynomials
If f1, . . . , fs homogeneous of degree 2,

gi :=
s∑

j=1

αij fj , 1 6 i 6 n

If αij algebraically independent (over Q), then

∀x̄

∧
j

fj(x̄) = 0 ⇐=
∧
i

gi (x̄) = 0


Replace αij by random integers, and use Schwartz-Lippel Lemma to
conclude

Bruno Grenet (LIP – ÉNS Lyon) Hardness of the resultant Toronto – Sept. 30, 2009 11 / 21



Resultant is NP-hard . . . under randomized reduction

Random integers are sufficient
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Φ(ᾱ) ⇐⇒
∨
k

(∧
l
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Resultant is NP-hard . . . under randomized reduction

Summary of the randomized reduction

Instance of H2N: more polynomials than variables, i.e. too many
polynomials

New system: linear combinations of the polynomials
If combinations with algebraically independent coefficients, then
equivalence
Algebraically independent coefficients can be replaced by random
integers
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Resultant is NP-hard . . . under deterministic reduction

Outline

1 Statement of the problem and upper bound

2 Resultant is NP-hard
. . . under randomized reduction
. . . under deterministic reduction
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Resultant is NP-hard . . . under deterministic reduction

Introduction

Instead of decreasing the number of polynomials, new variables are
added

Careful look to the equations is needed
Key point: translation in terms of the rank of the Jacobian matrix

H2N
Complex variables x0 and x1, . . . , xn

Equations x2
0 − x2

i = 0 for every i

→ f1, . . . , fn

I (xi + x0)2 = 0
I (xi + xj)

2 = 0
I (xi + x0)2 − (xj + x0) · (xk + x0) = 0

 → fn+1, . . . , fs
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Resultant is NP-hard . . . under deterministic reduction

Reduction

New variables: y1, . . . , ys−n−1

Equations fi (x̄) = x2
0 − x2

i = 0 unchanged (1 6 i 6 n)
fi (x̄) fi (x̄)− y2

i−n−1 + 13y2
i−n (n + 1 6 i 6 s)

New system

SG =



f1(x̄) = 0
...

fn(x̄) = 0

fn+1(x̄) + 13y2
1 = 0

fn+2(x̄)− y2
1 + 13y2

2 = 0
fn+3(x̄)− y2

2 + 13y2
3 = 0

...
fs−1(x̄)− y2

s−n−2 + 13y2
s−n−1 = 0

fs(x̄)− y2
s−n−1 = 0

 
ā solution of SF

⇓
(ā, 0̄) solution of SG
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(ā, 0̄) solution of SG

Bruno Grenet (LIP – ÉNS Lyon) Hardness of the resultant Toronto – Sept. 30, 2009 16 / 21



Resultant is NP-hard . . . under deterministic reduction

Reduction

New variables: y1, . . . , ys−n−1
Equations fi (x̄) = x2

0 − x2
i = 0 unchanged (1 6 i 6 n)

fi (x̄) fi (x̄)− y2
i−n−1 + 13y2

i−n (n + 1 6 i 6 s)

New system

SG =



f1(x̄) = 0
...

fn(x̄) = 0
fn+1(x̄) + 13y2

1 = 0
fn+2(x̄)− y2

1 + 13y2
2 = 0

fn+3(x̄)− y2
2 + 13y2

3 = 0
...

fs−1(x̄)− y2
s−n−2 + 13y2

s−n−1 = 0
fs(x̄)− y2

s−n−1 = 0
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Resultant is NP-hard . . . under deterministic reduction

Translation in terms of Jacobian matrices

Jacobian matrix
Let F : Cn+1 → Cs s.t. F (x̄) = (f1(x̄), . . . , fs(x̄))t . Then JF is defined by

(JF )ij =
∂fi
∂xj

.

Lemma
Let SF be a homogeneous polynomial system of s equations in n + 1
variables. If ā is a non trivial solution of SF , then JF (ā) has rank at most n.

Proof. SF is homogeneous =⇒ if SF has a non trivial solution, then there is a line of
solutions.
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variables. If ā is a non trivial solution of SF , then JF (ā) has rank at most n.

Proof. SF is homogeneous =⇒ if SF has a non trivial solution, then there is a line of
solutions.

Bruno Grenet (LIP – ÉNS Lyon) Hardness of the resultant Toronto – Sept. 30, 2009 17 / 21



Resultant is NP-hard . . . under deterministic reduction

Translation in terms of Jacobian matrices

Jacobian matrix
Let F : Cn+1 → Cs s.t. F (x̄) = (f1(x̄), . . . , fs(x̄))t . Then JF is defined by

(JF )ij =
∂fi
∂xj

.

Lemma
Let SF be a homogeneous polynomial system of s equations in n + 1
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Resultant is NP-hard . . . under deterministic reduction

Particular case of our system

Our system SF : x2
0 = x2

i , (xi + x0)2 = 0, (xi + xj)
2 = 0 and

(xi + x0)2 = (xj + x0) · (xk + x0).

Lemma
Let ā be a (n + 1)-tuple such that a2

0 = · · · = a2
n 6= 0.Then for our system

(i) ā is solution =⇒ rk(JF (ā)) = n;
(ii) ā is not solution =⇒ rk(JF (ā)) = n + 1.

Proof.

The first n rows are almost diagonal.

Exhaustive study of the Jacobian matrix: each equation is satisfied by ā iff the
corresponding row is linearly dependent from the first n ones. Why is this true?
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(i) ā is solution =⇒ rk(JF (ā)) = n;
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corresponding row is linearly dependent from the first n ones. Why is this true?

Bruno Grenet (LIP – ÉNS Lyon) Hardness of the resultant Toronto – Sept. 30, 2009 18 / 21



Resultant is NP-hard . . . under deterministic reduction

Particular case of our system

Our system SF : x2
0 = x2

i , (xi + x0)2 = 0, (xi + xj)
2 = 0 and

(xi + x0)2 = (xj + x0) · (xk + x0).

Lemma
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Resultant is NP-hard . . . under deterministic reduction

Equivalence of the old and new systems

SF infeasible =⇒ rk JF (ā)) = n + 1 ?
=⇒ rk JG (ā, b̄)) = s =⇒ SG infeasible

Let a0 = 1. Then for every i , ai = ±1.

det
(
1
2
JG (ā, b̄)

)
= det



1 ±1 0 · · · 0
...

. . .
...

...
1 ±1 0 · · · 0

13b1

‖ · ‖1 6 12 −b1
. . .
. . . 13bs−n−1

−bs−n−1


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Let a0 = 1. Then for every i , ai = ±1.

det
(
1
2
JG (ā, b̄)

)
= ± det


c1 13
... −1 . . .
...

. . . 13
cs−n −1


where |ci | 6 12. NB: (c1, . . . , cn) = 0̄ ⇐⇒ rk JF (ā)) = n.

The determinant is non zero, via the unicity of base-13 representation.
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Resultant is NP-hard . . . under deterministic reduction

Summary of the deterministic reduction

New variables are added, and last equations are modified  SG .

If ā is solution of SF , then (ā, 0̄) is solution of SG .
If SF has no solution, let (ā, b̄) 6= 0̄:

I The Jacobian matrix JF (ā) has maximal rank (as soon as ā 6= 0̄).
I Then JG (ā, b̄) has maximal rank (with a slight modification if some bi

vanishes).
I So SG cannot have non trivial solution.

H2N� is NP-hard.
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I Then JG (ā, b̄) has maximal rank (with a slight modification if some bi
vanishes).

I So SG cannot have non trivial solution.

H2N� is NP-hard.

Bruno Grenet (LIP – ÉNS Lyon) Hardness of the resultant Toronto – Sept. 30, 2009 20 / 21



Resultant is NP-hard . . . under deterministic reduction

Summary of the deterministic reduction

New variables are added, and last equations are modified  SG .
If ā is solution of SF , then (ā, 0̄) is solution of SG .
If SF has no solution, let (ā, b̄) 6= 0̄:
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Conclusion

Answer to Canny’s question.

Upper (AM) and lower (NP) bounds are “almost equal”.
Why does it work?
The method seems unable to prove results in algebraic complexity.

Thank you!
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