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Motivation

Complexity of numerical algorithms
Decision problem:

f : Rk → {0, 1} , A 7→ f (A) .

Assume we have a numerical algorithm that computes f .

How to analyze its running time?

Smale’s 2-part scheme

1. Bound the running time T (A) via

T (A) ≤
(
size(A) + (log of) condition(A)

)c
.

2. analyze condition(A) under random A

Prob (condition(A) ≥ t) ≤ . . .
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Motivation

2 forms of probabilistic analyses

Average-case analysis

I take 1 (global) distribution on the input space
I result depends heavily on the distribution
I usually too optimistic

Smoothed analysis

I take for every input ā a local distribution of dispersion σ
around ā & consider the supremum over all ā

I σ → diam(input space) : average-case
σ → 0 : “worst-case”

I result depends less on the distribution
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Motivation

Conic condition numbers
I input space = Sp (p-dimensional unit sphere)
I Σ ⊆ Sp (ill-posed inputs)

I C (a) =
1

sin d(a,Σ)
, d = geodesic distance on Sp (angle)
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Motivation

A general result

Theorem (Bürgisser, Cucker, Lotz)
Σ ⊆ (zero set of a homog. polynom. of degree ≤ d) 6= Sp,
ā ∈ Sp, σ ∈ (0, 1]. Then

E
a∈B(ā,σ)

lnC (a) = O
(
ln p + ln d + ln

1
σ

)
.

Robustness (Cucker, Hauser, Lotz)

I extension to radially symmetric distributions
I even allowed: the density has a singularity in the center
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Motivation

Motivating questions

I Can we get a general result for convex programming?
I What is the “degree” of convex programming?

The “degree” of the boundary of a convex body
K ⊂ Rm a convex body, L a generic line

|L ∩ ∂K | =

{
2 , if L hits K
0 , else

L

∂K

→ the “degree” of ∂K is 2



Geometric analysis of the condition of the convex feasibility problem

Condition of the convex feasibility problem

Motivation

Condition of the convex feasibility problem

Introducing the Grassmann condition

Probabilistic analysis of the Grassmann condition

Estimation results



Geometric analysis of the condition of the convex feasibility problem

Condition of the convex feasibility problem

A ∈ Rm×n (n > m), C ⊆ Rn closed convex cone,

C̆ := {y ∈ Rn | ∀x ∈ C : 〈y , x〉 ≥ 0} (dual of C ).

Convex feasibility problem (CFP)

∃x ∈ Rn \ {0} : Ax = 0 (P)
x ∈ C̆

∃y ∈ Rm \ {0} : AT y ∈ C (D)
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Condition of the convex feasibility problem

∃x ∈ Rn\{0} : Ax = 0
x ∈ C̆

(P) ∃y ∈ Rm\{0} : AT y ∈ C (D)

Most important cases
LP : C = Rn

+ = R+ × . . .× R+

SOCP : C = C1 × . . .× Ck ,

Ci = {x ∈ Rni | xni ≥ ‖(x1, . . . , xni−1)‖}

SDP : C = {M ∈ Sym` | M is pos. semidef.}

Sym` := {M ∈ R`×` | MT = M}
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Condition of the convex feasibility problem

Definition
FP := {A | (P) is feasible},

FD := {A | (D) is feasible},

Σ := FP ∩ FD .

Definition (Renegar’s condition number)

CR(A) :=
‖A‖

d(A,Σ)
.
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Introducing the Grassmann condition

Reformulation

∃x ∈ Rn\{0} : Ax = 0
x ∈ C̆

(P)

⇔

kerA︸ ︷︷ ︸
=W⊥

∩C̆ 6= {0}

∃y ∈ Rm\{0} : AT y ∈ C (D)

rk A=m⇔

imAT︸ ︷︷ ︸
=:W

∩C 6= {0}

Coordinate-free CFP
W ∈ Grn,m := {W ⊆ Rn | W lin. subspace , dimW = m}

W⊥ ∩ C̆ 6= {0} (P) W ∩ C 6= {0} (D)
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Introducing the Grassmann condition

Definition

FP := {W ∈ Grn,m | W⊥ ∩ C̆ 6= {0}} (primal feasible)

FD := {W ∈ Grn,m | W ∩ C 6= {0}} (dual feasible)

Σm := FP ∩ FD (ill-posed)

Definition (Grassmann condition)

CG(A) := C (W) :=
1

sin d(W,Σm)
,

if rk(A) = m, W := im(AT ), d = geod. distance in Grn,m.
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Introducing the Grassmann condition

Some details: d(W , Σm)

Let
C ⊂ Rn K := C ∩ Sn−1

C̆ = (dual of C ) K̆ := C̆ ∩ Sn−1

W ∈ Grn,m W :=W ∩ Sn−1 .

Then

d(W,Σm) =

d(W ,K ) if W ∩ C = {0}

d(W⊥, K̆ ) if W⊥ ∩ C̆ = {0} .

(dual feasible case: → [Belloni, Freund, 2007])
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Introducing the Grassmann condition

Alternative definition of CG(A)

Definition

Σ† := {A ∈ Rm×n | rk(A) < m}
= {A ∈ Rm×n | κ(A) =∞} (ill-posed)

Ω† := {A ∈ Rm×n | ‖A‖ = κ(A) = 1} (best-posed)

Proposition
A ∈ Rm×n, rk(A) = m
1. argmin{‖A− B‖F | B ∈ Ω†} =: Ã is uniquely determined

2. kerA = ker Ã , imAT = im ÃT

3. CG(A) = CR(Ã)
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Introducing the Grassmann condition

Some details: Ã

Let A ∈ Rm×n have singular value decomposition

A = U ·
( σ1

. . .
σm

0
)
· V ,

U ∈ O(m), V ∈ O(n). Then

Ã = U ·
( 1

. . .
1

0
)
· V .
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Introducing the Grassmann condition

Interpretation

I Ã corresponds to a preconditioning
I separation of “intrinsic” and “extrinsic” condition

Proposition
A ∈ Rm×n, rk(A) = m. Then

CG(A) ≤ CR(A) ≤ κ(A) · CG(A) .

(in the dual feasible case: [Belloni, Freund, 2007])
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Probabilistic analysis of the Grassmann condition

Main strategy

Tail estimates Prob(C (W) ≥ ε−1)
!
≤ . . . are volume estimates:

Av. : Prob(C (W) ≥ ε−1) =
vol(T (Σm, α))

vol(Grn,m)
,

(ε := sin(α))

Sm. : Prob(C (W) ≥ ε−1) =
vol
(
B(W̄, σ) ∩ T (Σm, α)

)
vol
(
B(W̄, σ)

)

Σm

ΣmW̄
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Probabilistic analysis of the Grassmann condition

Properties of Σm

M

C

Sn−1

M := ∂C ∩ Sn−1. Assume that
I M lies in an open halfsphere,
I M is a smooth hypersurface of Sn−1,
I the curvature of M does not vanish.

Then
I Σm ⊂ Grn,m orientable smooth hypersurface,
I isometry : Σm ∼= Gr(M,m − 1) (Grassmann bundle).

Duality:
Σm(C ) ∼= Σn−m(C̆ ) .

Special cases:
Σ1(C ) ∼= M

Σn−1(C ) ∼= M̆ , M̆ := ∂C̆ ∩ Sn−1 .
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K ⊂ R2 convex

vol(T (K , r)) = vol(K ) + vol(∂K ) · r + π · r2



Geometric analysis of the condition of the convex feasibility problem

Probabilistic analysis of the Grassmann condition

Euclidean Tube Formula
Theorem (Steiner, 1840)
K ⊂ R2 convex

vol(T (K , r)) = vol(K ) + vol(∂K ) · r + π · r2

K



Geometric analysis of the condition of the convex feasibility problem

Probabilistic analysis of the Grassmann condition

Euclidean Tube Formula
Theorem (Steiner, 1840)
K ⊂ R2 convex

vol(T (K , r)) = vol(K ) + vol(∂K ) · r + π · r2

T (K , r)



Geometric analysis of the condition of the convex feasibility problem

Probabilistic analysis of the Grassmann condition

Euclidean Tube Formula
Theorem (Steiner, 1840)
K ⊂ R2 convex

vol(T (K , r)) = vol(K ) + vol(∂K ) · r + π · r2



Geometric analysis of the condition of the convex feasibility problem

Probabilistic analysis of the Grassmann condition

Euclidean Tube Formula
Theorem (Steiner, 1840)
K ⊂ R2 convex

vol(T (K , r)) = vol(K ) + vol(∂K ) · r + π · r2



Geometric analysis of the condition of the convex feasibility problem

Probabilistic analysis of the Grassmann condition

Euclidean Tube Formula

Theorem (Steiner, 1840)
K ⊂ R2 convex

vol(T (K , r)) = vol(K ) + vol(∂K ) · r + π · r2

General case
K ⊂ Rn convex

vol(T (K , r)) =
n∑

i=0

Vi (K ) · r i
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Probabilistic analysis of the Grassmann condition

K(Rn) := {K ⊂ Rn | K compact & convex},

K ,K1,K2,K1 ∪ K2 ∈ K(Rn).

(1) Vi (K1 ∪ K2) = Vi (K1) + Vi (K2)− Vi (K1 ∩ K2)

(2) Vi (∅) = 0

(3) Vi (Q · K ) = Vi (K ) ∀Q ∈ O(n)

(4) Vi (a + K ) = Vi (K ) ∀a ∈ Rn

(5) Vi is continuous .
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Probabilistic analysis of the Grassmann condition

Theorem (Hadwiger, 1950s)
If µ : K(Rn)→ R satisfies (1)-(5) then

µ =
n∑

i=0

ci · Vi

for some uniquely determined c0, . . . , cn ∈ R.
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Probabilistic analysis of the Grassmann condition

Euclidean space → Sphere

Transfer of integral geometric results from the euclidean space to
the spherical setting was the subject of

S. Glasauer.
Integralgeometrie konvexer Körper im sphärischen Raum.
PhD Thesis, 1995.

(available at http://www.hs-augsburg.de/∼glasauer/publ/diss.pdf)

http://www.hs-augsburg.de/~glasauer/publ/diss.pdf
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Probabilistic analysis of the Grassmann condition

Spherical Steiner formula (Weyl)
Let

I K ⊂ Sn−1 spherically convex,
I 0 < α < π

2 ,
I S i ⊂ Sn−1 subsphere.

Then

vol(T (K , α)) = volK +
n−2∑
i=0

Vi (K ) · vol(T (S i , α)) .

Properties

I Vi (Sk) = δik
I If K ⊂ Sn−1 not a subsphere, then Vi (K ) ≤ 1

2 .

I
∑n−2

i=0 Vi (K ) = 1
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Probabilistic analysis of the Grassmann condition

One first application

A ∈ Rm×n Gaussian matrix
(→ W := im(AT ) ∈ Grn,m uniformly at random).

Then

Prob(A is dual feasible) = Prob(W ∩ C 6= {0})

= 2 ·
bm−1

2 c∑
k=0

Vn−m+2k(K ) .

(for LP: Wendel, 1962)
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Probabilistic analysis of the Grassmann condition

LP (Positive orthant) (polyhedral)

Vn−m−1 =

(n
m

)
2n

SOCP-1, (single Lorentz cone) (smooth)

Vn−m−1 ≈

((n
m

)
2n

) 1
2

SOCP (product of Lorentz cones) (stratified)

. . . (found closed formula)

SDP (Positive semidefinite cone) (stratified)

. . . (found closed formula)
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Probabilistic analysis of the Grassmann condition

End of intermission.
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Probabilistic analysis of the Grassmann condition

Spherical Tube Formula
T o(K , α) := T (K , α) \ K (outer tube)

vol(T o(K , α)) =
n−2∑
i=0

Vi (K ) · vol(T (S i , α))

Theorem (“Grassmannian Tube Formula”)

vol(T o(Σm, α)) = f (n,m) ·
n−2∑
i=0

Vi (K ) ·
n−2∑
k=0

cik · vol(T (Sk , α))

m ∈ {1, n − 1} : Spherical case,
volΣm : [Firey, Schneider, Teufel,. . . ],

General case : [Glasauer]

→ closed formulas for the tail of CG
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Probabilistic analysis of the Grassmann condition

Summation pattern

vol(T o(Σm, α)) = f (n,m) ·
n−2∑
i=0

Vi (K ) ·
n−2∑
k=0

cik · vol(T (Sk , α))

[
cik
]

i



∗
∗
∗
∗
∗
∗
∗
∗
∗


k

n = 10,m = 1
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Probabilistic analysis of the Grassmann condition

Summation pattern

vol(T o(Σm, α)) = f (n,m) ·
n−2∑
i=0

Vi (K ) ·
n−2∑
k=0

cik · vol(T (Sk , α))

[
cik
] 

∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗



n = 10,m = 2
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Probabilistic analysis of the Grassmann condition

Summation pattern

vol(T o(Σm, α)) = f (n,m) ·
n−2∑
i=0

Vi (K ) ·
n−2∑
k=0

cik · vol(T (Sk , α))

[
cik
] 

∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗



n = 10,m = 3
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Probabilistic analysis of the Grassmann condition

Summation pattern

vol(T o(Σm, α)) = f (n,m) ·
n−2∑
i=0

Vi (K ) ·
n−2∑
k=0

cik · vol(T (Sk , α))

[
cik
] 

∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗



n = 10,m = 4
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Probabilistic analysis of the Grassmann condition

Summation pattern

vol(T o(Σm, α)) = f (n,m) ·
n−2∑
i=0

Vi (K ) ·
n−2∑
k=0

cik · vol(T (Sk , α))

[
cik
] 

∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗



n = 10,m = 5
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Probabilistic analysis of the Grassmann condition

Summation pattern

vol(T o(Σm, α)) = f (n,m) ·
n−2∑
i=0

Vi (K ) ·
n−2∑
k=0

cik · vol(T (Sk , α))

[
cik
] 

∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗



n = 10,m = 6
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Probabilistic analysis of the Grassmann condition

Summation pattern

vol(T o(Σm, α)) = f (n,m) ·
n−2∑
i=0

Vi (K ) ·
n−2∑
k=0

cik · vol(T (Sk , α))

[
cik
] 

∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗



n = 10,m = 7
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Probabilistic analysis of the Grassmann condition

Summation pattern

vol(T o(Σm, α)) = f (n,m) ·
n−2∑
i=0

Vi (K ) ·
n−2∑
k=0

cik · vol(T (Sk , α))

[
cik
] 

∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗



n = 10,m = 8



Geometric analysis of the condition of the convex feasibility problem

Probabilistic analysis of the Grassmann condition

Summation pattern

vol(T o(Σm, α)) = f (n,m) ·
n−2∑
i=0

Vi (K ) ·
n−2∑
k=0

cik · vol(T (Sk , α))

[
cik
] 

∗
∗
∗
∗
∗
∗
∗
∗
∗


n = 10,m = 9
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Estimation results

Main Theorem
Let

I A ∈ Rm×n Gaussian matrix,
I ε := sin(α) < n−

3
2 .

Then for any convex cone C ⊂ Rn we have

Prob
(

CG(A) >
1
ε

)
< 6 · n · ε .

In particular,

E(lnCG(A)) < 2.5 · ln(n) + 2.8 .
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Estimation results

Using result by Chen, Dongarra (2005)

E(lnκ(A)) < ln
(

m + 1
2

)
+ 2.26

we get:

Corollary
A ∈ Rm×n Gaussian matrix. Then

E(lnCR(A)) < 3.5 · ln(n) + 5 .
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Estimation results

Special cases

arbitrary cone : E(lnCG(A)) < 2.5 · ln(n) + 2.8

Using the corresponding formulas for Vi (K ), we get

LP : E(lnCG(A)) < 1.5 · ln(m) + 6

SOCP-1 : E(lnCG(A)) < ln(m) + 8 .
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Estimation results

From average analysis to smoothed analysis

I 1st approach: Uniform distribution on geodesic balls in Grn,m:

vol
(
B(W̄, σ) ∩ T (Σm, α)

)
vol
(
B(W̄, σ)

) !
< . . . .

I Grassmannian Tube formula relies on “local intrinsic volumes”
(curvature measures).

→ Proof techniques from [Bürgisser, Cucker, Lotz]
should carry over.
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