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Error Analysis of Triangular Linear
System

The vast majority of the occurrences of condition numbers in the study of linear
systems of equations involve the normwise condition number κ(A). Almost
invariably, the use of κ(A) is enough to provide a satisfying explanation of the
phenomena observed in practice.

The case of triangular systems of linear equations provides, in contrast, an
example where κ(A) turns out to be inadequate. Practitioners observed since
long that triangular systems of equations are generally solved to high accuracy
in spite of being, in general, ill-conditioned. Thus, for instance, J.H. Wilkinson
in [22, p. 105]: “In practice one almost invariably finds that if L is ill-conditioned,
so that ‖L‖‖L−1‖ " 1, then the computed solution of Lx = b (or the computed
inverse) is far more accurate than [what forward stability analysis] would sug-
gest.”

A first goal in this chapter is to give a precise meaning to the feeling that
triangular matrices are, in general, ill-conditioned. We prove that, if L ∈ Rn×n

is a lower triangular matrix whose entries are independent standard Gaussian
random variables (i.e., L is drawn from N(0, In(n+1)

2
)) then E(logβ κ(L)) = Ω(n).

Corollary 2.4 then yields an expected loss of precision satisfying

E(LoP(L−1b)) = O(n).

Were the loss of precision in the solution of triangular systems conform to this
bound we would not be able to accurately find these solutions. The reason why
we actually do find them can be briefly stated. The error analysis of triangular
systems reveals that we may use a componentwise condition number Cw(L, b)
instead of the normwise. The second goal of this chapter is to prove that, when
L is drawn from N(0, In(n+1)

2
)) and b ∈ Rn is drawn from N(0, In) then we have

E(log Cw(L, b)) = O(log n). This bound, together with some backward error
analysis, yields bounds for E(LoP(L−1b)) which are much smaller than the one
above, as well as closer to the loss of precision observed in practice.
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4.1 Random Triangular Matrices are Ill-conditioned

The main result of this section states that random lower-triangular matrices are
ill-conditioned with respect to the normwise (classical) condition number.

Theorem 4.1. Let L = ("ij) ∈ Rn×n be a random lower-triangular matrix with
independent standard Gaussian random entries "ij for i ≥ j. Then we have

E(lnκ(L)) ≥ (ln 2)n− lnn− 1.

As a warm up, we first show a related result —with very simple proof— that
already indicates that on average, κ(L) grows exponentially in n. For this we
focus on unit lower-triangular matrices L, that is, we additionally assume that
"ii = 1.

Proposition 4.2. Let L = ("ij) denote a random unit lower-triangular matrix
with "ii = 1 and with independent standard Gaussian random entries "ij for
i > j. Then we have

E(‖L−1‖2F ) = 2n − 1.

In particular, E(‖L‖2F ‖L−1‖2F ) ≥ n(2n−1), hence E(κ(L)2) grows exponentially
in n.

Proof. The first column (s1, . . . , sn) of L−1 is characterized by s1 = 1 and the
recursive relation

si = −
i−1∑

j=1

"ijsj for i = 2, . . . , n.

This implies that si is a function of the first i rows of L. Hence the random
variable si is independent of the entries of L in the rows with index larger than i.
By squaring we obtain for i ≥ 2

s2
i =

∑

j !=k
j,k<i

"ij"iksjsk +
∑

j<i

"2ijs
2
j .

By the preceding observation, sjsk is independent of "ij"ik for j, k < i. If
additionally j &= k, we get

E("ij"iksjsk) = E("ij"ik) E(sjsk) = E("ij) E("ik) E(sjsk) = 0

as "ij and "ik are independent and centered. So the expectations of the mixed
terms vanish and we obtain, using E("2ij) = 1 (by Proposition 3.10), that

E(s2
i ) =

i−1∑

j=1

E(s2
j ) for i ≥ 2.
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Solving this recursion with E(s2
1) = 1 yields

E(s2
i ) = 2i−2 for i ≥ 2.

Therefore, the first column v1 of L−1 satisfies

E(‖v1‖2) = E
( n∑

i=1

s2
i

)
= 2n−1.

By an analogous argument one shows that

E(‖vk‖2) = 2n−k

for the kth column vk of L−1. Altogether, we obtain

E(‖L−1‖2F ) = E
( n∑

k=1

‖vk‖2
)

=
n∑

k=1

E(‖vk‖2) = 2n − 1.

Finally, we note that ‖L‖2F ≥ n since "ii = 1. Hence,

E(‖L‖2F ‖L−1‖2F ) ≥ n E(‖L−1‖2F ) ≥ n(2n − 1).

The last assertion follows from κ(L) ≥ 1
n‖L‖F ‖L−1‖F .

We turn now to the general situation. Consider a lower-triangular matrix
L = ("ij) ∈ Rn×n that is invertible, i.e., detL = "11 · · · "nn &= 0. We denote by
t1, . . . , tn the entries of the first column of L−1. These entries can be recursively
computed as follows

t1 = "−1
11

t2 = "−1
22 "21t1

t3 = "−1
33 ("31t1 + "32t2)

...

tn = "−1
nn ("n1t1 + · · ·+ "n,n−1tn−1)

We suppose that the "ij are independent standard Gaussian random variables.
The next lemma provides a recursive formula for the joint probability density
function fk of (t1, . . . , tk). We introduce the notation Tk :=

√
t21 + · · · t2k.

Lemma 4.3. The joint probability density function fk(t1, . . . , tk) satisfies the
following recurrence

f1 =
1√
2πt21

e
− 1

2t21 , fk =
1
π

Tk−1

T 2
k

fk−1 for k > 1.
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Proof. We have t1 = 1/x where x = "11 is standard Gaussian with density
ϕ(x) = (2π)−1/2e−

1
2 x2

. Therefore, by Proposition 4.5 (with n = 1, ψ(x) = 1/x,
and ρX = ϕ), the density ρ of the random variable t1 satisfies

ρ(t1) =
∣∣∣
dt1
dx

∣∣∣
−1

ϕ(x) = x2ϕ(x) =
1√
2πt21

e
− 1

2t21

as claimed.
To obtain the recursive expression for fk, we consider the random variable

τk := "k1t1 + · · ·+ "k,k−1tk.

For fixed values of t1, . . . , tk−1, the conditional distribution of τk is Gaussian
with mean 0 and variance T 2

k−1. Therefore, the joint probability density of
(t1, . . . , tk−1, τk) is given by

fk−1 ·
1√

2π Tk−1

e
− τ2

k
2T2

k−1

The variable tk is obtained as tk = τk/" where " = "kk is an independent
standard Gaussian random variable. Note that the joint probability density of
(t1, . . . , tk−1, τk, ") is given by

fk−1 ·
1√

2π Tk−1

e
− τ2

k
2T2

k−1
1√
2π

e−
"2
2 .

We make now the change of variables (t1, . . . , tk−1, τk, ") Ψ(→ (t1, . . . , tk−1, tk, ")
which satisfies det DΨ(t1, . . . , tk−1, tk, ") = "−1. Proposition 4.5 implies that
the density g of (t1, . . . , tk−1, tk, ") equals

g = fk−1 ·
1√

2π Tk−1

e
− "2t2k

2T2
k−1

1√
2π

e−
"2
2 · |"|.

A straightforward calculation, making the change of variables b = "2/2, shows
that

fk(t1, . . . , tk) =
∫ ∞

−∞
g(t1, . . . , tk, ") d" =

fk−1

2π Tk−1
2

∫ ∞

0
e
− "2

2 (
t2k

T2
k−1

+1)
" d"

=
fk−1

πTk−1

1
t2k

T 2
k−1

+ 1
=

fk−1

πTk−1

T 2
k−1

T 2
k

=
fk−1

π

Tk−1

T 2
k

,

which proves the desired recursion.

The recursive description of the joint probability density functions fk in
Lemma 4.3 yields the following recursion for E(lnT 2

k ).
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Lemma 4.4. We have E(lnT 2
k ) = E(lnT 2

k−1) + 2 ln 2 for k > 1.

Proof. By Lemma 4.3 we have, omitting the arguments ti to avoid cluttering
the notation,

E(lnT 2
k ) =

∫

Rk

fk lnT 2
k dt1 · · · dtk =

∫

Rk−1

fk−1Tk−1

π

∫

R

lnT 2
k

T 2
k

dtk dt1 · · · dtk−1.

We fix t1, . . . , tk−1 and rewrite the inner integral by making the change of vari-
able y = tk/Tk−1. Hence T 2

k = T 2
k−1(1 + y2) and we get

1
π

∫

R

lnT 2
k

T 2
k

dtk =
1

Tk−1

1
π

∫

R

lnT 2
k−1 + ln(1 + y2)

1 + y2
dy.

The function y (→ 1/(π(1 + y2)) is a probability density on R and a straightfor-
ward calculation shows that

1
π

∫

R

ln(1 + y2)
1 + y2

dy = 2 ln 2.

Hence we obtain for the inner integral

1
π

∫

R

lnT 2
k

T 2
k

dtk =
1

Tk−1
(lnT 2

k−1 + 2 ln 2).

Plugging in this expression above we obtain the stated recursion

E(lnT 2
k ) = E(lnT 2

k−1) + 2 ln 2.

Proof of Theorem 4.1. Using the expression for the density function f1 provided
by Lemma 4.3 we obtain, using software for symbolic integration,

E(lnT 2
1 ) =

1√
2π

∫

R

1
t21

e
− 1

2t21 ln t21 dt1 = ln 2 + γ

where γ ≈ 0.577 denotes the Euler-Mascheroni constant. Combining this with
the recursive expression of Lemma 4.4 we get

E(lnT 2
n) = (2 ln 2)(n− 1) + ln 2 + γ ≥ (2 ln 2)n− 0.12.

Recalling that Tn equals the Euclidean norm of the first column of L−1, this
implies

E(ln ‖L−1‖F ) ≥ E(lnTn) ≥ (ln 2)n− 0.06.

It is known that E(lnχ2
m) ≥ 0 for a chi-square distributed random vari-

able χ2
m with m degrees of freedom if m > 1. Since ‖L‖2F is chi-square

distributed with n(n + 1)/2 degrees of freedom, this implies E(ln ‖L‖F ) ≥ 0 if
n > 1. Therefore

E
(
ln(‖L‖F ‖L−1‖F )

)
≥ E(lnTn) ≥ (ln 2)n− 0.06.

Using that ‖L‖‖L−1‖ ≥ 1
n‖L‖F ‖L−1‖F , the assertion follows.
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Proposition 4.5. Let ψ : U → V be a diffeomorphism of open subsets U, V
of Rn. Suppose that X is a random vector taking values in U and having the
density ρX . Then the random variable Y := ψ(X) has the density

ρY (y) = ρX(x) · |det Dψ(x)|−1

where x = ψ−1(y).

Proof. This is an easy consequence of the transformation theorem of
integrals.

4.2 Backward Analysis of Triangular Linear Systems

Let L = ("ij) ∈ Rn×n be a non-singular lower triangular matrix and b ∈ Rn.
We are interested in solving the system Lx = b. Algorithmically, this is very
simple, the components x1, . . . , xn of the solution x are sequentially obtained
by back substitution as follows:

algorithm BS
input (L, b)
x1 := b1/"11
for i = 2 . . . n do

compute w := "i1x1 + · · ·+ "i,i−1xi−1

compute xi := bi−w
"ii

It is straightforward to obtain a backward error analysis from the results we
proved in Chapter 1. We use notations introduced in Section 1.3.

Proposition 4.6. There is a round-off implementation of algorithm BS which,
with input L ∈ Rn×n and b ∈ Rn, computes the solution x of Lx = b. If
εmach(+log2 n,+ 1) < 1 then the computed value fl(x) satisfies (L + E)fl(x) = b
with |eij | ≤ γ$log2 i%+1|"ij |.

Proof. By induction on n. If n = 1 then,

fl(x1) =
b1

"11
(1 + θ1) =

b1

(1 + θ1)"11

and the statement follows since |θ1| ≤ γ1.
Now assume n > 1 and let x̄ = (x1, . . . , xn−1), b̄ = (b1, . . . , bn−1), and

L̄ ∈ R(n−1)×(n−1) be the matrix obtained by removing the nth row and the
nth column of L. Then, L̄ is lower triangular, non-singular, and L̄x̄ = b̄. By
induction hypothesis the point fl(x) = (fl(x1), . . . , fl(xn−1)) computed at the first
(n− 2) iterations of BS satisfies (L̄ + Ē)fl(x) = b̄ with |ēij | ≤ γ$log2 i%+1|"ij |.

We now use Proposition 1.4 to perform the (n− 1)th iteration (which com-
putes xn) with A = ("n1, . . . , "n,n−1) ∈ R1×(n−1). By this proposition, we
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compute the product Afl(x) = "n1fl(x1) + · · · + "n,n−1fl(xn−1) and obtain fl(w)
satisfying

fl(w) = ("n1 + en1)fl(x1) + · · ·+ ("n,n−1 + en,n−1)fl(xn−1)

with |enj | ≤ γ$log2(n−1)%+1|"nj | for j ≤ n − 1. We then compute xn and we
obtain

fl(xn) = fl
(bn − fl(w)

"nn

)
=

( (bn − fl(w))(1 + θ1)
"nn

)
(1 + θ1)

=
bn − ("n1 + en1)fl(x1) + · · ·+ ("n,n−1 + en,n−1)fl(xn−1)

"nn(1 + θ2)

and the result follows by taking enn = "nnθ2 and E the matrix obtained by
putting Ē in its upper-left (n− 1)× (n− 1) corner, appending (en1, . . . , enn) as
the nth row, and filling the remaining of the nth column with zeros.

4.3 Componentwise Condition of Random Sparse Matri-
ces

Proposition 4.6 justifies to measure relative errors componentwise and, as a
consequence, to use componentwise condition numbers in the error analysis.
The goal of this section is to give a (classical) probabilistic analysis for these
condition numbers.

We will work in the more general context of sparse matrices (which, in this
section, are matrices with a fixed pattern of zeros1). Therefore, the following
results apply not only to triangular matrices but to other classes of sparse ma-
trices such as, for instance, tridiagonal matrices. Also, in the process of proving
our main result we will estimate as well the average componentwise condition
for the computation of the determinant and matrix inversion.

4.3.1 Componentwise condition numbers revisited

Recall, for a function ϕ : D ⊆ Rm → Rq and a point a ∈ D with ai &= 0 and
ϕj(a) &= 0 for all i ≤ m and j ≤ q, we defined in (1.1) the componentwise
condition number

Cwϕ(a) = lim
δ→0

sup
RelError(a)≤δ

RelError(ϕ(a))
RelError(a)

where both RelError(a) and RelError(ϕ(a)) are measured componentwise and we
make the convention that 0

0 = 1. That is,

RelError(a) = max
i≤m

|ãi − ai|
|ai|

1The word “sparse” is also used to denote matrices with a large number of zeros, not
necessarily in fixed positions.
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and similarly for ϕ(a). In this case, we saw in Section 1.2 that we have Cwϕ(a) =
max
j≤q

Cwϕ
j (a) where, for j ≤ q,

Cwϕ
j (a) = lim

δ→0
sup

RelError(a)≤δ

RelError(ϕ(a)j)
RelError(a)

.

We want to extend these definitions to the general case where any of the com-
ponents of a or ϕj(a) may be zero.

The case of ai = 0 is easily dealt with. We say that RelError(a) ≤ δ for a
perturbation ã when |ãi− ai| ≤ δ|ai| for all i = 1, . . . ,m. The case of ϕj(a) = 0
for some j ∈ [q] is dealt with the following definition.

Definition 4.7. For j ≤ q such that ϕj(a) &= 0, we let

Cwj(ϕ, a) := lim
δ→0

sup
RelError(a)≤δ

|ϕj(ã)− ϕj(a)|
RelError(a)|ϕj(a)|

and for j ≤ q with ϕj(a) = 0 we take Cwϕ
j (a) := 1 if

lim
δ→0

sup
RelError(a)≤δ

|ϕj(ã)− ϕj(a)|
RelError(a)

= 0

and Cwϕ
j (a) = ∞ otherwise. Then, we define

Cwϕ(a) := max
j≤q

Cwϕ
j (a).

In all what follows, for n ∈ N, we denote the set {1, . . . , n} by [n] and write,
as usual, [n]2 = [n]× [n].

Definition 4.8. We denote by M the set of n × n real matrices and by Σ its
subset of singular matrices. Also, for a subset S ⊆ [n]2 we denote

MS = {A ∈ M | if (i, j) &∈ S then aij = 0}

and |S| for its cardinality. We denote by RS the space of random n×n matrices
obtained by setting aij = 0 if (i, j) &∈ S and drawing all other entries indepen-
dently from the standard Gaussian N(0, 1). As above, if S = [n]2, we write
simply R.

Remark 4.9. Note that by the definition of relative error MS is closed under
perturbations: if A ∈ MS and Ã is a perturbation with RelError(A) ≤ δ, then
Ã ∈ MS .

In the rest of this chapter, for non-singular matrices A, Ã, we denote their
inverses by Γ, Γ̃, respectively. Also, we denote by A(ij) the sub-matrix of A
obtained by removing from A its ith row and its jth column. Denoting by γij

the (i, j)th entry of Γ we have, by Cramer’s rule, γij = (−1)i+j det(A(ji))
det(A) .
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4.3.2 Determinant computation

We consider here the problem of computing the determinant of a matrix A
and its componentwise condition number Cwdet(A) which is defined by taking
ϕ : M → R to be ϕ(A) = det(A) in Definition 4.7. Our main result for Cwdet(A)
is the following.

Theorem 4.10. For S ⊆ [n]2 and t ≥ 2|S| we have

Prob
A∈RS

{Cwdet(A) ≥ t} ≤ |S|2 1
t
.

We may use Theorem 4.10 to estimate the average componentwise condition
number for the computation of the determinant.

Corollary 4.11. For a base β ≥ 2 and a set S ⊆ [n]2 with |S| ≥ 2, we have
E(logβ Cwdet(A)) ≤ 2 logβ |S|+logβ e where E denotes expectation over A ∈ RS.

Proof. Use Propositions 3.18 and 4.12 below together with Theorem 4.10 taking
Z = Cwdet(A), α = 1 and t0 = K = |S|2 (note that |S|2 ≥ 2|S| since |S| ≥
2).

Proposition 4.12. For all A ∈ M \ Σ we have Cwdet(A) ≥ 1.

Proof. For each δ > 0 consider Ã ∈ M with rows a1(1 + δ), a2, . . . , an where
a1, . . . , an are the rows of A. Then RelError(A) = δ and

RelError(detA) =
|det(Ã)− det(A)|

|det(A)| = δ.

Lemma 4.13. For A ∈ M \ Σ,

Cwdet(A) =
∑

i,j∈[n]

∣∣∣∣
aij det(A(ij))

det(A)

∣∣∣∣ .

Proof. Let A ∈ M . For any i ∈ [n], expanding by the ith row,

det(A) =
∑

j∈[n]

(−1)i+jaij det(A(ij)).

Hence, for all i, j ∈ [n],

∂ det(A)
∂aij

= (−1)i+j det(A(ij)).

Let δ > 0 and Ã such that RelError(A) ≤ δ. Then, ‖Ã− A‖ ≤ RelError(A)‖A‖.
Using Taylor’s expansion and the equalities above we obtain

det(Ã) = det(A) +
∑

i,j∈[n]

(−1)i+j(ãij − aij) det(A(ij)) +O
(
RelError(A)2

)
.
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It follows that, for A &∈ Σ,

Cwdet(A) = lim
δ→0

sup
RelError(A)≤δ

|det(Ã)− det(A)|
RelError(A)|det(A)|

= lim
δ→0

sup
RelError(A)≤δ

∣∣∣
∑

i,j∈[n](−1)i+j(ãij − aij) det(A(ij))
∣∣∣

RelError(A)|det(A)|

= lim
δ→0

sup
RelError(A)≤δ

∑

i,j∈[n]

|(ãij − aij) det(A(ij))|
RelError(A)|det(A)| .

The last equality follows from the fact that we can choose Ã such that the terms
(−1)i+j(ãij − aij) det(A(ij)) have the same sign for all i, j ∈ [n]. Actually, the
supremum above is attained by taking ãij = aij(1 ± δ) where we take the plus
sign if (−1)i+j det(A(ij)) ≥ 0 and the minus sign otherwise. Therefore

Cwdet(A) =
∑

i,j∈[n]

∣∣∣∣
aij det(A(ij))

det(A)

∣∣∣∣ .

Lemma 4.14. Let p, q be two fixed vectors in Rn such that ‖p‖ ≤ ‖q‖. If
x ∼ N(0, In) then, for all t ≥ 2,

Prob

{∣∣∣∣
xTp

xTq

∣∣∣∣ ≥ t

}
≤ 1

t
.

Proof. Let ν = ‖q‖. By the rotational invariance of N(0, In) we may assume
q = (ν, 0, . . . , 0). Also, by appropriately scaling, we may assume that ν = 1.
Note that then ‖p‖ ≤ 1. We therefore have

Prob

{∣∣∣∣
xTp

xTq

∣∣∣∣ ≥ t

}
= Prob






∣∣∣∣∣∣
p1 +

∑

i∈{2,...,n}

xipi

x1

∣∣∣∣∣∣
≥ t






= Prob

{∣∣∣∣p1 +
1
x1

αZ

∣∣∣∣ ≥ t

}
(4.1)

= Prob

{
Z

x1
≥ t− p1

α

}
+ Prob

{
Z

x1
≤ −t− p1

α

}

where Z = N(0, 1) is independent of x1 and α =
√

p2
2 + . . . + p2

n ≤ 1. Here
we used that a sum of independent centered Gaussians is a centered Gaussian
whose variance is the sum of the terms’ variances (cf. §3.1.1). Note that in case
α = 0 the statement of the lemma is trivially true.

The random variable x1 and Z are independent N(0, 1). It therefore follows
from Proposition 3.10 that the angle θ = arctan (Z/x1) is uniformly distributed
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in [−π/2, π/2]. Hence, for γ ∈ [0,∞),

Prob

{
Z

x1
≥ γ

}
= Prob {θ ≥ arctan γ} =

1
π

(π

2
− arctan γ

)

=
1
π

∫ ∞

γ

1
1 + t2

dt ≤ 1
π

∫ ∞

γ

1
t2

dt =
1

πγ
.

Similarly, one shows, for σ ∈ (−∞, 0],

Prob

{
Z

x1
≤ σ

}
≤ 1

π(−σ)
.

Using these bounds in (4.1) with γ = t−p1
α and σ = −t−p1

α we obtain

Prob

{∣∣∣∣
xTp

xTq

∣∣∣∣ ≥ t

}
≤ 1

π

(
α

t− p1
+

α

t + p1

)
=

α

π

2t

t2 − p2
1

≤ 2
π

t

t2 − 1
≤ 1

t
,

the last since t ≥ 2.

Lemma 4.15. Let S ⊆ [n]2. Then,

1. if MS ⊆ Σ then, for all A ∈ MS, Cwdet(A) = 1,

2. if MS &⊆ Σ, then Prob
A∈RS

(A is singular) = 0.

Proof. Since MS ⊆ Σ and A ∈ MS we have, for all δ > 0, that if Ã is such that
RelError(A) ≤ δ then Ã ∈ Σ. Part (1) now follows.

For part (2), we note that the set of singular matrices in MS is the zero set
of the restriction of the determinant to MS . This restriction is a polynomial in
R|S| whose zero set, if different from R|S|, has dimension smaller than |S|.

Proof of Theorem 4.10. Case (i): MS ⊆ Σ. In this case, the desired inequality
is trivial by Lemma 4.15(1).

Case (ii): MS &⊆ Σ. By Lemma 4.15(2), with probability 1, A is non-singular.
So, by Lemma 4.13,

Prob{Cwdet(A) ≥ t} = Prob





∑

(i,j)∈S

∣∣∣∣
aij det(A(ij))

det(A)

∣∣∣∣ ≥ t






≤
∑

(i,j)∈S

Prob

{∣∣∣∣
aij det(A(ij))

det(A)

∣∣∣∣ ≥
t

|S|

}
.(4.2)

It is therefore enough to prove that, for all (i, j) ∈ S and all z > 0,

(4.3) Prob

{∣∣∣∣
aij det(A(ij))

det(A)

∣∣∣∣ ≥ z

}
≤ 1

z
.
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Without loss of generality, take (i, j) = (1, 1). Let x = a1 be the first column of
A. Also, let I = {i ∈ [n] | (i, 1) ∈ S} and xI be the vector obtained by removing
entries xi with i &∈ I. Then,

(4.4) xI ∼ N(0, I|I|).

For i ∈ [n] write qi = (−1)i+1 det(A(i1)). Let q = (q1, . . . , qn) and qI be the
vector obtained by removing entries qi with i &∈ I. Clearly, qI is independent
of xI . Using this notation, the expansion by the first column yields

det(A) =
∑

i∈[n]

(−1)i+1ai1 det(A(i1)) = xT
I qI .

In addition, a11 det(A(11)) = xT
I (q1e1) where e1 is the vector with the first entry

equal to 1 and all others equal to 0. Hence,

a11 det(A(11))
det(A)

=
xT

I (q1e1)
xT

I qI

Let ρ be the density of the random vector qI . Then, for z ≥ 2,

Prob

{∣∣∣∣
a11 det(A(11))

det(A)

∣∣∣∣ ≥ z

}
= Prob

{∣∣∣∣
xT

I (q1e1)
xT

I qI

∣∣∣∣ ≥ z

}

=
∫

u∈R|I|
Prob

{∣∣∣∣
xT

I (u1e1)
xT

I u

∣∣∣∣ ≥ z
∣∣∣ qI = u

}
ρ(u)du

≤
∫

u∈R|I|

1
z

ρ(u) du =
1
z
.

Here the inequality follows since xI is independent of q1 and qI and therefore
we can use (4.4) and Lemma 4.14 (with p = q1e1 and q = qI). This proves (4.3)
and hence the lemma.

4.3.3 Matrix inversion

We now focus on the problem of inverting a matrix A and its componentwise
condition number Cw†(A) obtained from Definition 4.7 by taking D = M \ Σ
and ϕ : M \ Σ → M given by ϕ(A) = A−1. Our main results for Cw†(A) are
the following two.

Theorem 4.16. Let S ⊆ [n]2 be such that MS &⊆ Σ. Then, for all t ≥ 4|S|,

Prob
A∈RS

{Cw†(A) ≥ t} ≤ 4|S|2n2 1
t
.

Using Propositions 3.18 and 4.18 below we obtain the following corollary.
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Corollary 4.17. Let S ⊆ [n]2 be such that MS &⊆ Σ. Then,

E(logβ(Cw†(A))) ≤ 2 logβ n + 2 logβ |S|+ logβ 4e

where E denotes expectation over A ∈ RS.

Proposition 4.18. For all A ∈ M \ Σ we have Cw†(A) ≥ 1.

Proof. Take Ã = (1 − δ)A so that Ã−1 = 1
1−δ A−1 = A−1 + δA−1 + o(δ). Now

reason as in Proposition 4.12.

Lemma 4.19. For A ∈ M \ Σ and k, " ∈ [n],

Cw†
k"(A) ≤ Cwdet(A) + Cwdet(A("k)).

Proof. We divide the proof into cases. Case (i): γk" &= 0.
Let δ > 0 be sufficiently small so that if RelError(A) ≤ δ then Ã &∈ Σ and∣∣∣det(Ã)−det(A)
det(A)

∣∣∣ < 1. Let Ã be such that RelError(A) ≤ δ.

Since γk" = det(A("k))
det(A) ,

γ̃k" − γk"

γk"
=

det(A)
det(A("k))

(
det(Ã("k))

det(Ã)
−

det(A("k))
det(A)

)

=
det(A)

det(A("k))
det(Ã("k))

det(Ã)
− 1

=
1 + det(Ã("k))−det(A("k))

det(A("k))

1 + det(Ã)−det(A)
det(A)

− 1

=
det(Ã("k))−det(A("k))

det(A("k))
− det(Ã)−det(A)

det(A)

1 + det(Ã)−det(A)
det(A)

.

Using that
∣∣∣det(Ã)−det(A)

det(A)

∣∣∣ < 1,

∣∣∣∣
γ̃k" − γk"

γk"

∣∣∣∣ ≤

∣∣∣det(Ã(lk))−det(A("k))
det(A("k))

∣∣∣ +
∣∣∣det(Ã)−det(A)

det(A)

∣∣∣

1−
∣∣∣det(Ã)−det(A)

det(A)

∣∣∣

and therefore

sup
RelError(A)≤δ

∣∣∣∣
γ̃k" − γk"

RelError(A)γk"

∣∣∣∣

≤
supRelError(A)≤δ

∣∣∣det(Ã("k))−det(A("k))
RelError(A) det(A("k))

∣∣∣ + supRelError(A)≤δ

∣∣∣ det(Ã)−det(A)
RelError(A) det(A)

∣∣∣

1− supRelError(A)≤δ

∣∣∣det(Ã)−det(A)
det(A)

∣∣∣
.
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Taking limits for δ → 0 on both sides we get

Cw†
k"(A) ≤ Cwdet(A) + Cwdet(A("k)).

Case (ii): γk" = 0 and

lim
δ→0

sup
RelError(A)≤δ

|γ̃k"|
RelError(A)

= 0.

In this case, Cw†
k"(A) = 1 and the statement holds.

Case (iii): γk" = 0 and

0 &= lim
δ→0

sup
RelError(A)≤δ

|γ̃k"|
RelError(A)

= lim
δ→0

sup
RelError(A)≤δ

|det(Ã"k)|
RelError(A)|det(Ã)|

.

In this case Cwdet(A"k) = ∞ and the statement holds as well.

Proof of Theorem 4.16. By definition of Cw†(A),

Prob{Cw†(A) ≥ t} = Prob

{
max

k,"∈[n]
Cw†

k"(A) ≥ t

}
≤

∑

k,"∈[n]

Prob{Cw†
k"(A) ≥ t}.

By Lemma 4.15(2), A is non-singular with probability 1. So, since t
2 ≥ 2|S| by

hypothesis, we can apply Lemma 4.19 to obtain

Prob{Cw†
k"(A) ≥ t} ≤ Prob

{
Cwdet(A) ≥ t

2

}
+ Prob

{
Cwdet(A(k")) ≥

t

2

}

≤ 4|S|2 1
t

the last inequality by applying Theorem 4.10 to A and A(k"). The statement
now follows.

4.3.4 Linear equations solving

We finally deal with the problem of solving linear systems of equations. That
is, we consider a matrix A ∈ MS and a vector b ∈ Rn and we want to solve
Ax = b. We denote by Cw(A, b) the corresponding componentwise condition
number which, again, is obtained from Definition 4.7 by takingD = (M \Σ)×Rn

and ϕ : (M \ Σ)× Rn → Rn given by ϕ(A, b) = A−1b.

Theorem 4.20. Let S ⊆ [n]2 be such that MS &⊆ Σ. Then, for all t ≥ 4(|S|+n),

Prob{Cw(A, b) ≥ t} ≤ 10|S|2n1
t

where Prob denotes probability over (A, b) ∈ RS ×N(0, In).
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We may use Proposition 3.18 once more (together with Proposition 4.22
below).

Corollary 4.21. Let S ⊆ [n]2 be such that MS &⊆ Σ. Then,

E(logβ(Cw(A, b))) ≤ logβ n + 2 logβ |S|+ logβ 10e.

Proposition 4.22. For all A ∈ M \ Σ and all b ∈ Rn we have Cw(A, b) ≥ 1.

Proof. Take Ã = A and b̃ = (1 + δ)b so that Ã−1b̃ = (1 + δ)x where x = A−1b.
Now reason as in Proposition 4.12.

Recall that we denote by A[k : b] the matrix obtained by replacing the kth
column of A by b.

Lemma 4.23. For any non-singular matrix A and k ∈ [n] we have

Cwk(A, b) ≤ Cwdet(A) + Cwdet(A[k : b]).

Proof. By Cramer’s rule,

xk =
det(A[k : b])

det(A)
.

The rest of this proof is similar to the proof of Lemma 4.19.

Proof of Theorem 4.20. It follows the lines of that of Theorem 4.16. First, we
get

Prob{Cw(A, b) ≥ t} ≤
∑

k∈[n]

Prob{Cwk(A, b) ≥ t}.

Then, we apply Lemma 4.23 and Theorem 4.10 (using that, with probability 1,
A &∈ Σ and that t

2 ≥ 2|S|) to get

Prob{Cwk(A, b) ≥ t} ≤ Prob

{
Cwdet(A) ≥ t

2

}
+ Prob

{
Cwdet(A[k : b]) ≥ t

2

}

≤ 2|S|2 1
t

+ 2(|S|+ n)2
1
t
≤ 10|S|2 1

t
.

For the second inequality we used the fact that |S| ≥ n. The statement now
follows.
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4.4 Error Bounds for Triangular Linear Systems

We may now use the results in the preceding sections to estimate the expected
loss of precision in the solution of a triangular system Lx = b.

Theorem 4.24. Assume we solve Lx = b using algorithm BS. Then, for stan-
dard Gaussian L and b we have

E
(
LoP(L−1b)

)
≤ 5 logβ n + logβ(+log2 n,+ 1) + logβ 10e + o(1).

Proof. By Proposition 4.6 and Theorem 1.3 (with f(dims(L, b)) = +log2 n,+ 1)
we have

LoP(L−1b) ≤ logβ(+log2 n,+ 1) + logβ Cw(L, b) + o(1).

Therefore, using Corollary 4.21 with |S| = n2+n
2 ,

E
(
LoP(L−1b)

)
≤ logβ(+log2 n,+ 1) + E(logβ Cw(L, b)) + o(1)

≤ logβ(+log2 n,+ 1) + 5 logβ n + + logβ 10e + o(1).

If fl(x) = (fl(x1), . . . , fl(xn)) is the solution of Lx = b computed by BS, the
number of correct significant figures of its ith component is

∣∣∣∣logβ
|fl(xi)− xi|

|xi|

∣∣∣∣ .

We can rephrase Theorem 4.24 stating that for standard Gaussian L and b

E
(

min
i≤n

∣∣∣∣ logβ
|fl(xi)− xi|

|xi|

∣∣∣∣

)

≥ t−
(

5 logβ n + logβ(+log2 n,+ 1) + logβ 10e + o(1)
)

where t = | logβ εmach| is the number of significant figures the machine works
with (compare §1.3.2).


