
1

On the Condition of Numerical
Problems and the Numbers that
Measure It

1.1 The Size of Errors

Since none of the numbers we take out from logarithmic or
trigonometric tables admit of absolute precision, but are all to
a certain extent approximate only, the results of all calculations
performed by the aid of these numbers can only be approxi-
mately true. [. . .] It may happen, that in special cases the
effect of the errors of the tables is so augmented that we may be
obliged to reject a method, otherwise the best, and substitute
another in its place.

Carl Friedrich Gauss, Theoria Motus

The heroes of numerical mathematics (Euler, Gauss, Lagrange, . . .) developed a
good number of the algorithmic procedures which make the essence of Numerical
Analysis. At the core of these advances there was the invention of calculus. And
underlying the latter, the field of real numbers.

The dawn of the digital computer, in the decade of the 40s, allowed the
execution of these procedures on increasingly large data, an advance which,
however, made even more patent the fact that real numbers cannot be encoded
with a finite number of bits and, therefore, that computers had to work with
approximations only. With the increased length of the computations the sys-
tematic rounding of all occurring quantities could now accumulate to a higher
extend. Occasionally, as already remarked by Gauss, the errors affecting the
outcome of a computation were so big as to make it irrelevant.

Expressions like “the error is big” beg the question, how does one measure
an error? To approach this question, let us first assume that the object whose
error we are considering is a single number x encoding a quantity which may
take values on an open real interval. An error of magnitude 1 may yield another
real number x̃ with value either x− 1 or x+1. Intuitively, this will be harmless
or devastating depending on the magnitude of x itself. Thus, for x = 106 the
error above is hardly noticeable but for x = 10−3 it is certainly not (and may

2 The Cost of Erring

even change basic features of x such as being positive). A relative measure of
the error appears to convey more meaning. We therefore define1

RelError(x) =
|x̃− x|
|x| .

Note that this expression is well-defined only when x "= 0.
How does this measure extends to elements x ∈ Rm? We want to consider

relative errors as well but, how does one relativize? There are essentially two
ways:

Componentwise: Here we look at the relative error in each component taking
as error for x the maximum of them. That is, for x ∈ Rm such that xi "= 0
for i = 1, . . . ,m, we define

RelError(x) = max
i≤m

RelError(xi).

Normwise: Endowing Rm with a norm allows one to mimic, for x "= 0, the
definition for the scalar case. We obtain

RelError(x) =
‖x̃− x‖
‖x‖ .

Needless to say, the normwise measure depends on the choice of the norm.

1.2 The Cost of Erring

How do round-off errors affect computations? The answer to this question de-
pends on a number of factors: the problem being solved, the data at hand, the
algorithm used, the machine precision (as well as other features of the com-
puter’s arithmetic), . . . While it is possible to consider all these factors together,
a number of idealizations leading to the consideration of simpler versions of our
question appears as a reasonable —if not necessary— course of action. The
notion of condition is the result of some of these idealizations. More specifically,
assume that the problem being solved can be described by a function

ϕ : D ⊆ Rm → Rq

where D is an open subset of Rm. Assume as well that the computation of ϕ is
performed by an algorithm with infinite precision (that is, there are no round-off
errors during the execution of this algorithm). All errors in the computed value
arise as a consequence of possible errors while reading the input (which we will
call perturbations). Our question above then takes the form

1To be completely precise we should write RelError(x, x̃). In all what follows, however, to
simplify notation, we will omit the perturbation x̃ and write simply RelError(x).

On the Condition of Numerical Problems 3

How large is the output error with respect to the input perturbation?

The condition number of input a ∈ Rm (with respect to problem ϕ) is, roughly
speaking, the worst possible magnification of the output error with respect to a
small input perturbation. More formally,

(1.1) condϕ(a) = lim
δ→0

sup
RelError(a)≤δ

RelError(ϕ(a))
RelError(a)

.

This expression defines the condition number as a limit. For small values of δ
we can consider the approximation

condϕ(a) ≈ sup
RelError(a)≤δ

RelError(ϕ(a))
RelError(a)

and, for practical purposes, the approximate bound

(1.2) RelError(ϕ(a)) ! condϕ(a)RelError(a)

or yet, using “little oh” notation for RelError(a) → 0,

(1.3) RelError(ϕ(a)) ≤ condϕ(a)RelError(a) + o(RelError(a)).

Expression (1.1) defines a familiy of condition numbers for the pair (ϕ, a).
Errors can be measured both componentwise or normwise and in the latter case,
there are a good number of norms to choose from. The choice of normwise or
componentwise measures for the errors has given rise to three kinds of condition
numbers (condition numbers for normwise perturbations and componentwise
output errors are not considered in the literature).

perturbation
normwise componentwise

output normwise normwise mixed
error componentwise componentwise

We will generically denote normwise condition numbers by condϕ(a), mixed
condition numbers by Mϕ(a), and componentwise condition numbers by Cwϕ(a).
We may skip the superscript ϕ if it is clear from the context. In the case of
componentwise condition numbers one may be interested in considering the
relative error for each of the output components separately. Thus, for j ≤ q one
defines

Cwϕ
j (a) = lim

δ→0
sup

RelError(a)≤δ

RelError(ϕ(a)j)
RelError(a)

and one has Cwϕ(a) = max
j≤q

Cwϕ
j (a).

The consideration of a normwise, mixed, or componentwise condition number
will be determined by the characteristics of the situation at hand. To illustrate

4 The Cost of Erring

this let’s look at data perturbation. The two main reasons to consider such
perturbations are inaccurate data reading and backward-error analysis.

In the first case the idea is simple. We are given data which we know
inaccurate. This may be because we obtained it by measurements with finite
precision (e.g., when weighting an object the weight is displayed with a few
digits only) or because our data is the result of an inaccurate computation.

The idea of backward-error analysis is less simple (but very elegant). For
a problem ϕ we may have many algorithms that solve it. While all of them
ideally compute ϕ when endowed with infinite precision, under the presence of
errors they will only compute approximations of this function. At times, for a
problem ϕ and a finite-precision algorithm A ϕ solving it, it is possible to show
that for all a ∈ Rm there exists e ∈ Rm satisfying

(∗) Aϕ(a) = ϕ(a + e), and
(∗∗) e is small w.r.t. a.

In this situation —which we refer by saying that A ϕ is backward-stable— infor-
mation on how small exactly is e (i.e., how much is RelError(a)) together with
the condition number of a directly yield bounds on the error of the computed
quantity A ϕ(a). For instance, if (**) above takes the form

‖e‖ ≤ m310−6‖a‖

we will deduce, using (1.2), that

(1.4) ‖A ϕ(a)− ϕ(a)‖ ! condϕ(a)m310−6‖ϕ(a)‖.

No matter whether because of inaccurate data reading or because of a
backward-error analysis we will measure the perturbation of a in accordance
with the situation at hand. If, for instance, we are reading data in a way that
each component ai satisfies RelError(ai) ≤ 5 × 10−8 we will measure pertur-
bations in a componentwise manner. If, in contrast, a backward-error analysis
yields an e satisfying ‖e‖ ≤ m3‖a‖10−6 we will have to measure perturbations
in a normwise manner.

While we may have more freedom in the way we measure the output error
there are situations in which a given choice seems to impose itself. Such a situa-
tion could arise when the outcome of the computation at hand is going to be the
data of another computation. If perturbations of the latter are measured, say,
componentwise, we will be interested in doing the same with the output error
of the former. A striking example where error analysis can be only appropi-
ately explained using componentwise conditioning is the solution of triangular
systems of equations. We will return to this issue on Chapter 4.

At this point it is perhaps convenient to emphasize a distinction between
condition and (backward) stability. Given a problem ϕ the former is a property
of the input only. That is, it is independent on the possible algorithms used to

On the Condition of Numerical Problems 5

compute ϕ. In contrast, backward stability, at least in the sense defined above,
is a property of an algorithm A ϕ computing ϕ which holds for all data a ∈ Rm

(and is therefore independent of particular data instances).
Expressions like (1.4) are known as forward-error analyses and algorithms

A ϕ yielding a small value of ‖A ϕ(a)−ϕ(a)‖
‖ϕ(a)‖ are said to be forward-stable. It

is important to mention that while backward-error analyses immediately yield
forward-error bounds, some problems do not admit backward-error analysis and
therefore, their error-analysis must be carried forward.

It is time to have a closer look at the way errors are produced in a computer.

1.3 Finite-precision Arithmetic and Loss of Precision

1.3.1 Precision . . .

Although the details of computer arithmetic may vary with computers and
software implementations, the basic idea was agreed upon shortly after the dawn
of digital computers. It consisted in fixing positive integers β ≥ 2 (the basis of
the representation), t (its precision), and e0, and approximating non-zero real
numbers by rational numbers of the form

z = ±
(

m

βt

)
βe

with m ∈ {1, . . . ,βt} and e ∈ {−e0, . . . , e0}. The fraction m
βt is called the

mantissa of z and the integer e its exponent. The condition |e| ≤ e0 sets limits
on how big (and how small) z may be. Although these limits may give rise
to situations were (the absolute value of) the number to be represented is to
large (overflow) or to small (underflow) for the possible values of z, the value of
e0 in most implementations is large enough to make these phenomenon rare in
practice. Idealizing a bit, we may assume e0 = ∞.

As an example, taking β = 10 and t = 12 we can approximate

π8 ≈ 0.948853101607× 104.

The relative error in this approximation is bounded by 1.1× 10−12 . Note that
t is the number of correct digits of the approximation. Actually, for any real
number x, by appropriately rounding and truncating an expansion of x we can
obtain a number x̃ as above satisfying that x̃ = x(1+ δ) with |δ| ≤ β−t+1

2 . That
is

RelError(x) ≤ β−t+1

2
.

More generally, whenever a real number x is approximated by x̃ satisfying an
inequality as the one above we say that x̃ approximates x with t correct digits2.

2This notion reflect the intuitive idea of significant figures modulo carry differences. The
number 0.9999 approximates 1 with a precision t = 10−4. Yet, their first significant digits are
different.

6 Finite-precision Arithmetic and Loss of Precision

Leaving aside the details such as the choice of basis or the particular way
a real number is truncated to obtain a number as described above, we may
summarize the main features of computer arithmetic (recall, we assume e0 = ∞)
by stating the existence of a subset F ⊂ R containing 0 (the floating-point
numbers), a rounding map round : R → F, and a round-off unit (also called
machine epsilon) 0 < εmach < 1, satisfying the following properties:

(i) For any x ∈ F, round(x) = x. In particular round(0) = 0.

(ii) For any x ∈ R, round(x) = x(1 + δ) with |δ| ≤ εmach.

Furthermore, one can take εmach = β−t+1

2 and therefore | log εmach| = t− logβ
β
2 .

Arithmetic operations on F are defined following the scheme

x ◦̃ y = round(x ◦ y)

for any x, y ∈ F and ◦ ∈ {+,−,×, /} so that

◦̃ : F× F → F.

It follows from (ii) above that, for any x, y ∈ F we have

x ◦̃ y = (x ◦ y)(1 + δ), |δ| ≤ εmach.

Other operations may be also considered. Thus, a floating-point version √̃ of
the square root would similarly satisfy

√̃
x =

√
x(1 + δ), |δ| ≤ εmach.

When combining many operations in floating-point arithmetic expressions such
as (1 + δ) above naturally appear. To simplify round-off analyses it is useful to
consider the quantities, for k ≥ 1 and kεmach < 1,

(1.5) γk :=
kεmach

1− kεmach

and to denote by θk any number satisfying |θk| ≤ γk. In this sense, θk represents
a set of numbers and different occurrences of θk in a proof may denote different
numbers. Note that

(1.6) γk ≤ kεmach if k + 1 ≤ ε−1
mach.

The proof of the following proposition can be found in Chapter 3 of [11].

Proposition 1.1. The following relations hold (assuming all quantities are well
defined):

1) (1 + θk)(1 + θj) = 1 + θk+j,

On the Condition of Numerical Problems 7

2)
1 + θk

1 + θj
=

{
1 + θk+j if j ≤ k
1 + θk+2j if j > k,

3) If max{kεmach, jεmach} ≤ 1/2 then γkγj ≤ γmin{k,j},

4) iγk ≤ γik,

5) γk + εmach ≤ γk+1,

6) γk + γj + γkγj ≤ γk+j.

1.3.2 . . . and the way we lose it

When computing an arithmetic expression q with a round-off algorithm, errors
will accumulate and we will obtain another quantity which we denote by fl(q).
We will also write Error(q) = |q − fl(q)| so that RelError(q) = Error(q)

|q| .
Assume now that q is computed with a real number algorithm A executed

using floating point arithmetic from data a (a formal model for real number
algorithms was given in [3]). No matter how precise is the representation we are
given of the entries of a, these entries will be rounded to t digits. Hence t (or,
being roughly the same, | logβ εmach|) is the precision of our data. On the other
hand, the number of correct digits in fl(q) is approximately − logβ RelError(q).
Therefore, the value

LoP(q) := logβ
RelError(q)

εmach
= | logβ εmach|+ logβ RelError(q)

quantifies the loss of precision in the computation of q. To extend this notion
to the computation of vectors v = (v1, . . . , vq) ∈ Rq we need to fix a measure
for the precision of the computed fl(v) = (fl(v1), . . . , fl(vq)) : componentwise or
normwise.

In the componentwise case, we have that

− logβ RelError(v) = − logβ max
i≤q

|fl(vi)− vi|
|vi|

= min
i≤q

(
− logβ

|fl(vi)− vi|
|vi|

)

so that the precision of v is the smallest of the precisions of its components.
For the normwise measure we take the precision of v to be

− logβ RelError(v) = − logβ
‖fl(v)− v‖

‖v‖ .

This choice has both the pros and cons of viewing v as a whole and not as the
aggregation of its components.

8 Finite-precision Arithmetic and Loss of Precision

For both the componentwise and the normwise measures we can consider
εmach as a measure of the worst possible relative error RelError(a) when we read
data a with round-off unit εmach since in both cases

max
ã||ãi−ai|≤εmach|ai|

RelError(a) = εmach.

Hence, | logβ εmach| represents in both cases the precision of data. We therefore
define the loss of precision in the computation of ϕ(a) to be

(1.7) LoP(ϕ(a)) := logβ
RelError(ϕ(a))

εmach
= | logβ εmach|+ logβ RelError(ϕ(a)).

Remark 1.2. By associating RelError(a) ≈ εmach we may view the logarithm
of a condition number logβ condϕ(a) as a measure of the worst possible loss of
precision in a computation of ϕ(a) in which the only error occurs when reading
the data.

To close this section we prove a result putting together —and making precise—
a number of issues dealt with so far. For data a ∈ Rm we call m the size of a
and we write size(a) = m. Ocasionally, this size is a function of a few integers,
the dimensions of a, the set of which we denote by dims(a). For instance, a p×q
matrix has dimensions p and q and size pq.

Theorem 1.3. Let A ϕ be a finite-precision algorithm with round-off unit εmach

computing a function ϕ : D ⊆ Rm → Rq. Assume A ϕ satisfies the following
backward bound

A ϕ(a) = ϕ(ã)
with ã such that

RelError(a) ≤ f(dims(a))εmach + o(εmach)

for some positive function f and where the “little oh” is for εmach → 0. Then
the computed A ϕ(a) satisfies the forward bound

RelError(ϕ(a)) ≤ f(dims(a))condϕ(a)εmach + o(εmach)

and the loss of precision in the computation (in base β) is bounded as

LoP(ϕ(a)) ≤ logβ f(dims(a)) + logβ condϕ(a) + o(1).

Here condϕ refers to the condition number defined in (1.1) with the same mea-
sures (normwise or componentwise) for RelError(a) and RelError(ϕ(a)) as those
in the backward and forward bounds above, respectively.

Proof. The forward bound immediately follows from the backward bound and (1.3).
For the loss of precision we have

logβ RelError(ϕ(a)) ≤ logβ

(
f(dims(a))condϕ(a)εmach(1 + o(1)

)

≤ logβ f(dims(a)) + logβ condϕ(a)−
∣∣logβ εmach

∣∣ + o(1)

from which the statement follows.

On the Condition of Numerical Problems 9

1.4 An Example: Matrix-vector Multiplication

It is perhaps time to illustrate the notions introduced so far by analyzing a
simple problem namely, matrix-vector multiplication. We begin with a (compo-
nentwise) backward stability analysis.

Proposition 1.4. There is a finite-precision algorithm A which, with input
A ∈ Rm×n and x ∈ Rn, computes the product Ax. If εmach(0log2 n1+ 1) < 1
then the computed vector fl(Ax) satisfies fl(Ax) = Ãx with

|ãij − aij | ≤ (0log2 n1+ 1)εmach|aij |.

Proof. Let b = Ax. For i = 1, . . . ,m we have

bi = ai1x1 + ai2x2 + . . . + ainxn.

For the first product in the right-hand side we have fl(ai1x1) = ai1x1(1 + δ)
with |δ| ≤ εmach ≤ εmach

1−εmach
= γ1. That is, fl(ai1x1) = ai1x1(1 + θ1) and similarly

fl(ai2x2) = ai2x2(1 + θ1). Note that the two occurrences of θ1 here denote two
different quantities. Hence, using Proposition 1.1,

fl(ai1x1 + ai2x2) =
(
ai1x1(1 + θ1) + ai2x2(1 + θ1)

)
(1 + θ1)

= ai1x1(1 + θ2) + ai2x2(1 + θ2).

By the same reasoning, fl(ai3x3 + ai4x4) = ai3x3(1 + θ2) + ai4x4(1 + θ2) and
therefore

fl(ai1x1 + ai2x2 + ai3x3 + ai4x4)

=
(
ai1x1(1 + θ2) + ai2x2(1 + θ2) + ai3x3(1 + θ2) + ai4x4(1 + θ2)

)
(1 + θ1)

= ai1x1(1 + θ3) + ai2x2(1 + θ3) + ai3x3(1 + θ3) + ai4x4(1 + θ3).

Continuing in this way we obtain

fl(bi) = ãi1x1 + ãi2x2 + . . . + ãinxn

with ãij = aij(1 + θ&log2 n'+1). The result follows using (1.6). !

Remark 1.5. Note that the algorithm computing Ax is implicitly given in the
proof of Proposition 1.4. This algorithm uses a balanced tree-like structure for
the sums. The order of the sums cannot be arbitrarily altered: the operations
+̃ and ·̃ are nonassociative.

We next estimate the componentwise condition number of matrix-vector
multiplication. In doing so, we note that in the backward analysis of Proposi-
tion 1.4 only the entries of A are perturbed. Those of x aren’t. This feature
allows one to consider the condition of data (A, x) for perturbations of A only.
Such a situation is common and also arises when data is structured (e.g., unit
upper triangular matrices have zeros below the diagonal and ones on the diag-
onal) or contains entries which are known to be integers.

10 An Example: Matrix-vector Multiplication

Proposition 1.6. The componentwise condition numbers Cwi(A, x) of matrix-
vector multiplication, for perturbations of A only, satisfy

Cwi(A, x) ≤ | sec(ai, x)|

where ai denotes the ith row of A and sec(ai, x) = 1
cos(ai,x) denotes the secant

of the angle θi it makes with x.

Proof. Let Ã = A + E be a perturbation of A with E = (eij). By definition,
|eij | ≤ RelError(A)|aij |, for all i, j, hence ‖ei‖ ≤ RelError(A)‖ai‖, for all i (here
‖ ‖ denotes Euclidean norm in Rn). We obtain,

RelError((Ax)i) =
|eT

i x|
|aT

i x|
≤ ‖ei‖‖x‖

|aT
i x|

≤ RelError(A)
‖ai‖‖x‖
|aT

i x|
.

This implies that

Cwi(A, x) = lim
δ→0

sup
RelError(A)≤δ

RelError((Ax)i)
RelError(A)

≤ ‖ai‖‖x‖
|aT

i x|
=

1
| cos(ai, x)| = | sec(ai, x)|.

A bound for the loss of precision in the componentwise context follows.

Corollary 1.7. In the componentwise setting, for all i such that bi = (Ax)i "= 0,

RelError(bi) ≤ | sec(ai, x)|(0log2 n1+ 1)εmach + o(εmach)

and
LoP(bi) ≤ logβ | sec(ai, x)|+ logβ(0log2 n1+ 1) + o(1).

Proof. Immediate from Propositions 1.4 and 1.6 and Theorem 1.3.

The corollary above states that if we are working with | logβ εmach| bits of pre-
cision, we compute a vector fl(Ax) whose non-zero entries have, approximately,
at least

| logβ εmach|− logβ | sec(ai, x)|− logβ log2 n

bits of precision. This is a satisfying result. One may, nevertheless, wonder
about the (absolute) error for the zero components of Ax. In this case a norm-
wise analysis may be more appropriate.

To proceed with a normwise analysis we first need to choose a norm in the
space of m× n matrices. For simplicity, we choose

‖A‖∞ = max
‖x‖∞=1

‖Ax‖∞.

On the Condition of Numerical Problems 11

It is well known that

(1.8) ‖A‖∞ = max
i≤n

‖ai‖1.

Now note that it follows from Proposition 1.4 that the perturbation Ã in its
statement satisfies

(1.9) ‖Ã−A‖∞ ≤ γ&log2 n'+1‖A‖∞.

Therefore, we do have a normwise backward-error analysis. In addition, a norm-
wise version of Proposition 1.6 can be easily obtained.

Proposition 1.8. The normwise condition number cond(A, x) of matrix-vector
multiplication, for perturbations on A only, satisfies

cond(A, x) =
‖A‖∞‖x‖∞
‖Ax‖∞

.

Proof. We have

cond(A, x) = lim
δ→0

sup
RelError(A)≤δ

RelError(Ax)
RelError(A)

= lim
δ→0

sup
‖Ã−A‖∞≤δ‖A‖∞

‖Ãx−Ax‖∞
‖Ax‖∞

‖A‖∞
‖Ã−A‖∞

≤ ‖A‖∞‖x‖∞
‖Ax‖∞

.

Actually, equality holds. In order to see this assume, without loss of generality,
that ‖x‖∞ = |x1|. Set Ã = A+E where e11 = δ and eij = 0 otherwise. Then we
have ‖Ãx−Ax‖∞ = ‖Ex‖∞ = δ|x1| = ‖E‖∞‖x‖∞ = ‖Ã−A‖∞‖x‖∞. !

Again, a bound for the loss of precision immediately follows.

Corollary 1.9. In the normwise setting, when Ax "= 0,

LoP(Ax) ≤ logβ

(
‖A‖∞‖x‖∞
‖Ax‖∞

)
+ logβ(0log2 n1+ 1) + o(1).

Proof. It is an immediate consequence of (1.9), Proposition 1.8, and Theo-
rem 1.3.

Remark 1.10. If m = n and A is invertible, it is possible to give a bound on
the normwise condition which is independent of x. Using that x = A−1Ax we
deduce ‖x‖∞ ≤ ‖A−1‖∞‖Ax‖∞ and therefore, by Proposition 1.8, cond(A, x) ≤
‖A−1‖∞‖A‖∞. A number of readers may find this expression familiar.

12 The Many Faces of Condition

1.5 The Many Faces of Condition

The previous sections attempted to introduce condition numbers by retracing
the way these numbers were introduced: as a way of measuring the effect of
data perturbations. The expression “condition number” was first used by Tur-
ing [19] to denote a condition number for linear equation solving, independently
introduced by him and by von Neumann and Goldstine [21] in the late 1940’s.
Expressions like “ill-conditioned set [of equations]” to denote systems with a
large condition number were also introduced in [19].

Conditioning, however, was eventually related to other issues in computation
and this, together with their original role in error-propagation analysis, triggered
research on different aspects of the subject. We briefly describe some of them
in what follows.

1.5.1 Condition and complexity

In contrast with direct methods (such as Gaussian elimination), the number
of times that a certain basic procedure is repeated in iterative methods is not
data independent. In the analysis of this dependence on the data at hand it
was early realized that, quite often, one could express it by using its condition
number. That is, the number of iterations the algorithm A ϕ would perform
with data a ∈ Rm could be bounded by a function of m, condϕ(a), and —in the
case of an algorithm computing an ε-approximation of the desired solution—
the accuracy ε. A very satisfying bound would have the form

(1.10) number of iterations of A ϕ(a) ≤
(

m + log condϕ(a) + log
(

1
ε

))O(1)

and a less satisfying (but still acceptable in many cases) would have log condϕ(a)
replaced by condϕ(a) and/or log

(
1
ε

)
replaced by 1

ε . We will encounter several
instances of this condition based analysis in the coming chapters.

1.5.2 Computing condition numbers

Irrespective of whether relative errors are measured normwise or componentwise,
the expression (1.1) defining the condition number of a (for the problem ϕ) is
hardly usable. Not surprisingly then, one of the main lines of research regarding
condition numbers has focused on finding equivalent expressions for condϕ(a)
which would be directly computable or, if this appears to be out of reach, tight
enough bounds with this property. We have done so for the problem of matrix-
vector multiplication in Propositions 1.6 and 1.8 (for the componentwise and
normwise cases, respectively).

On the Condition of Numerical Problems 13

1.5.3 Condition of random data

How many iterations does an iterative algorithm need to perform to compute
ϕ(a)? To answer this questions we need condϕ(a). And to compute condϕ(a) we
would like a simple expression like those in Propositions 1.6 and 1.8. A second
look at these expressions, however, shows that they seem to require ϕ(a), the
quantity we were interested in the first place. For, in the componentwise case,
we need to compute sec(ai, x) —and hence aT

i x— for i = 1, . . . , n, and in the
normwise the expression ‖Ax‖∞ speaks by itself. Worst of all, this is not an
isolated situation. We will see that the condition number of a matrix A with
respect to matrix inversion is expressed in terms of A−1 (or some norm of this
inverse) and that a similar phenomenon occurs for each of the problems we
consider. So, even though we do not formalize this situation as a mathematical
statement we can informally describe it by saying that the computation of a
condition number condϕ(a) is never easier than the computation of ϕ(a). The
most elaborate reasoning around this issue was done by Renegar [14].

A similar problem appears with perturbation considerations. If we are only
given a perturbation ã of data a, how can we know how accurate is ϕ(ã)? Even
assuming we can accurately and fast compute condϕ the most we could do is to
compute condϕ(ã), not condϕ(a).

There are a number of situations where this seemingly circular situations
can be broken. Instead of attempting to make a list of them (an exercise which
can only result in boredom) we next describe a way out pioneered by John von
Neumann (e.g., in [9]) and strongly advocated by Steve Smale in [17]. It consist
of randomizing the data (i.e., in assuming a probabilistic distribution D in Rm)
and considering the tail

Prob
a∼D

{condϕ(a) ≥ t}

or the expected value (for q ≥ 1)

E
a∼D

(logq condϕ(a)) .

The former, together with a bound as in (1.10), would allow one to bound the
probability that A ϕ needs more than a given number of iterations. The latter,
taking q to be the constant in the O(1) notation, to estimate the expected
number of iterations. Furthermore, the latter again, now with q = 1, can be
used to obtain an estimate of the average loss of precision for a problem ϕ
(together with a backward stable algorithm A ϕ if we are working with finite
precision arithmetic).

For instance, for the example that made the substance of Section 1.4, we
will prove that

E(logβ Cwi(A)) ≤ 1
2

logβ n +O(1).

Using Corollary 1.7, this bound implies that the expected loss of precision in
the computation of (Ax)i is at most 1

2 logβ n + logβ log2 n +O(1).

14 The Many Faces of Condition

The probabilistic analysis proposed by von Neumann and Smale relies on the
assumption of “evenly spread random data.” A different approach was recently
proposed that relies instead on the assumption of “non-random data affected
by random noise.” We will develop both approaches in this book.

1.5.4 Ill-posedness and condition

Let us return once more to the example of matrix-vector multiplication. If A
and x are such that Ax = 0 then the denominator in ‖A‖∞‖x‖∞

‖Ax‖∞ is zero and we
may well define cond(A, x) = ∞. This reflects the fact that no matter how small
the absolute error in computing Ax, the relative error will be infinite. The quest
for any relative precision is, in this case, a battle lost in advance. It is only fair
to refer to instances like this with a name that betrays this hopelessness. We
say that a is ill-posed for ϕ when condϕ(a) = ∞. Again, one omits the reference
to ϕ when the problem is clear from the context but it goes without saying that
the notion of ill-posedness, as that of condition, is with respect to a problem.
It also depends on the way we measure errors. For instance, in our example,
Cw(A, x) = ∞ if and only if there exists i ≤ n such that aT

i x = 0 while for
cond(A, x) to be infinity it is necessary (and sufficient) that Ax = 0.

The subset of Rm of ill-posed inputs is denoted by Σϕ (or simply by Σ) and
it has played a distinguished role in many developments in conditioning. To see
why let us return (yes, once again) to matrix-vector multiplication, say in the
componentwise setting. Recall we are considering x as fixed (i.e., not subject to
perturbations). In this situation we take Σ ⊂ Rn×m to be the set of matrices A
such that Cw(A, x) = ∞. We have Σ =

⋃
i≤n Σi with

Σi = {A ∈ Rn×m | Cwi(A, x) = ∞} = {A ∈ Rn×m | aT
i x = 0}.

Now, recall, Cwi(A, x) = 1
| cos(ai,x)| . If we denote by āi the orthogonal projection

of ai on the space x⊥ = {y ∈ Rm | yTx = 0} then

1
| cos(ai, x)| =

‖ai‖
‖ai − āi‖

and it follows that
Cwi(A, x) =

‖ai‖
dist(A,Σi)

.

That is, componentwise, the condition number of (A, x) is the inverse of the
relativized distance from A to ill-posedness.

This is not an isolated phenomenon. On the contrary, it is a common oc-
currence that condition numbers can be expressed as, or at least bounded by,
the inverse of a relativized distance to ill-posedness. We will actually meet this
theme repeatedly in this book.

