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Witness Theorems. 
 
NP-Completeness Theorem.  
HNR is universal NP-complete problem (over R, an integral domain or field). 
(eg Z2, R, C)  
 

Let Q  be the algebraic closure of Q.  

Transfer Theorem. P = NP over C ֞  P = NP over Q . 
Can replace C by any algebraically closed field F of characteristic 0. 
 
A key element in the proof is to show how to quickly test if a polynomial  

Fx (t) = F(x, t1, ..., tn) ≡ 0. Here x = (x1, …, x p) א Q
p
and t = ( t1, ..., tn)  are indeterminants  

substituting for  algebraically independent constants built into a machine over C (which we want to 
eliminate). 
 
If the polynomial is given in standard form then Fx (t) ≡ 0 if and only if all the coefficients are 0. 
But the polynomial may be presented in other forms, e.g. as a straight line program, as in this case. 
We want to quickly construct a witness w such that Fx (w) = 0 implies Fx ≡ 0. 
 
This is of independent interest. 
 
Theorem (DeMillo & Lipton, 1978; Schwartz, 1980; Zippel, 1979). 
Suppose F is an integral domain and p א F [x1, …, xn] of degree d and S ؿ F. If p0ء, then  

Pr [ ( ) 0] .
| |

nw S

d
p w

S
   

This is the basis of many probabilistic algorithms and also for transfer results such as: 
P = NPC ฺ  BPP ـNP (bit model).  
 
 
Theorem (Kabanets & Impagliazzo, 2004).   
If (in the bit model) one can test in polynomial time whether a polynomial F א Z [x1, …, xn] given 
by an arithmetic circuit is identically zero, then get lower bounds. In particular, then either i) 
NEXP P/poly or ii) Permanent is not computable by polynomial size arithmetic circuits. 
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Two Witness Theorems give polynomial time tests in the algebraic model. 
 
Given G א Z [t1,…,tm]. Define τ(G):  
Consider the finite sequences: (u0, u1,…, um, um+1, …, um+s = G) 
where u0 = 1, u1 = t1, …, um = tm, and for m < k ≤ m +s, uk = v*w for some v, w א {u0, u1, …, uk-1} 
and * is +, − or ×. Then (u0, u1,…, um, um+1, …, um+s = G) is a straight line program for G and  
τ (G) is the minimum such s +1. 
 
Let F(x, t) = F(x 1, ..., x p, t1, ..., tn) be a polynomial in p+n variables with coefficients in Z. 
For each x א Q p, let Fx א Q  [t1, ..., tn] be defined as Fx(t) = F(x, t). 

Definition. w = (w1, …, wn) א Q n is a witness for Fx if : Fx (w) = 0 ฺ Fx ≡ 0. 
 

1. Witness Theorem (BCSS,1996) 
Suppose N is a positive integer satisfying: log N   4(p+n)2 + 4,  =  (F). 

Then for each x א Q p, there exists w1 in {2N, x1
N,…, xp

N} such that  

w = (w1, …, wn),  where  wi+1 = wi
N,  is a witness for Fx .* (In particular, over Q , we can choose 

w1 of largest height in  {2N, x1
N,…, xp

N}.) 
 

*By the Transfer property for algebraically closed fields, Q  can be replaced by any algebraically 
closed field of characteristic 0.  
 

Proof  uses properties of heights of algebraic numbers. 
 

---------------------------------------------------------------------- 
 
Def.  Let W’(n, p, v) be the set of polynomials over C in n variables that can be computed by 
straight-line programs of length at most v using p complex parameters. 
 
2. Theorem (P. Koiran, 1997)  
There are are universal constants c1 and c2 such that the following holds:  

2 2( )1 1( ) 2 2

1 ( 1)

1
1 1

1

Let 2  and 2 .   (Can let 2  and 2 .) 

Let ,...,  be a  sequence of integers such that  

v 1 and v 1  for k 2.

Let u ,...,  be a  sequence of points in N  

c cc cn v vn v v

n p

k d
k k

n
s

d M d M

v v

M d v

u








   

    

1 ( 1) 2 ( 1)

1 1

defined by: ( , ..., ).

Then ( ,..., ) is a correct test sequence for W'(n,p,v).

i n i n i ni

p

u v v v

u u

   





 

 

Def.  Let F be a family of polynomials in K[x1, …, xn]. A sequence {ui} i =1, …, s of points in Kn 
is a correct test sequence for F if for any p א F, p(ui) = 0 for all i = 1, …, s, implies p 0 ؠ. 
 

(By the Transfer property for algebraically closed fields, C  can be replaced by any algebraically 
closed field of characteristic 0.)  
 
 

Proof uses fast quantifier elimination for algebraically closed fields giving bounds on sizes of 
integers coefficients.  
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Proof of Witness Theorem 1. 
 
See, Lang, Diophantine Geometry, Springer-Verlag, 1991 and BCSS (1996,1998). 

Over Q  there is a height function H: Q R   (see Lang) with the following properties: 
 
Proposition 3. 

a. H(1) = H(0) =1; H(2) = 2, H(w) ≥ 1, H(-w) = H(w), H (1/w) = H (w) 

b. H(v+w) ≤  2H(v) H(w) 

c. H(wk) = H(w)k,  H(vw) ≤ H(v) H(w) 

d. H(v+w) ≥ 1/2H(v)/H(w)  

e. H(vw) ≥ H(v)/H(w) if w≠ 0 

 

(Over Q, we can define a height function H(p/q) = max (|p|,|q|) where gcd (p,q) =1; and H (0) =1.  

Exercise: Check Proposition 3 over Q with this height function.) 
 

a, b ฺ d: H(v) = H (( v+w) –w) ൑ 2H(v+w)H(w)  ׵ H(v+w) ൒ ½ H(v)/H(w).
 

a, c ฺ e: Hሺvሻ ൌ H ሺvwሺ1/wሻሻ ൑HሺvwሻHሺwሻ  ׵ H(vw) ൒ H(v)/H(w). 

 

Also, in general (from b):  

 
0

0

( ) 2 ( ).
n

nn
i ii

i

H v H v




 
 

---------------- 
 


0

Let ( ) [ ]
d

i
i

i

g t a t Q t


   be a polynomial in one variable over Q   of degree d. 

Define. 
0

( ) ( ).
d

i
i

H g H a



 

 
Want to prove: If H(w) > 2dH(g) then: g(w) = 0 ฺ g≡0. 
 

Proposition 4. For w Q ,  H(g(w)) ≤ 2dH(w)dH(g).  (Use Horner’s rule.) 
Proof.  

0 1 2 1
0

(3 ,3 ) 0 1

( ( )) ( ) ( ( ( ... ( ))...))

2 ( ) ( ) ( ) ( )... ( ) ( ) 2 ( ) ( ).

d
i

i d d
i

d d d
b c d

H g w H a w H a w a w a w a wa

H a H w H a H w H a H w H w H g




      

 



ז
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Proposition 5. Suppose d > 0. Then, for ,w Q  H(g(w)) ≥ H(w)/2dH(g). 
Proof.   (Uses Propositions 3 and 4.) 

1

(3 ) (3 ,3 )1 1
0

0 0

(4) (3 )1 1
0 1 1

( ) ( )
( ( )) ( ) 1/ 2 1/ 2

( ) ( ) ( )

( ) ( )
1/ 2 (1/ 2 )

( )2 ( ) ( ) ( )... ( ) ( )

d dd
d i d

d i d c ed d
i ii

i d i
i i

d
d

cd d
d d

H a w H w
H g w H a w a w

H a w H a H a w

H w H w

H a H w H a H a H a H g



 


 

 


   

 


 

ז

 

 
 
***Corollary.  If H(w) > 2dH(g) then: g(w) = 0 ฺ g≡0. 
 
Proof.   By  Proposition 5, if H(w) > 2dH(g), then H(g(w)) > 1. ז 
 
---------------------- 
Many variables: 

1

1

1 1 n
( ,..., )

Let ( ) ... [t ,..., t ]n

n

nG t a t a t t Q
 

   

   
 
be a polynomial in n variables over .Q   

Define. ( ) ( ).H G H a


     

Proposition 6.  Suppose G א Z[t1, …, tm] and τ = τ(G). Then    
2( 2 )2H G  2 .

m 

   

 
Lemma 1. Let D = 2τ. Then the degree of G is less than or equal to D. The number of monomials 
in G, indexed by α, is less than Dm. 
 
Proof of Proposition 6.   
Induction on τ.   τ =1, ok! 
Let G = FF’ where τ(F), τ(F’) < τ.  (Other cases easier.) 

1 1 1

Let ( ) ,  '( )  and ( )  where .

Here ( ,..., ), ( ,..., ) and ( ,..., ).m m m

F t a t F t b t G t c t c a b  
      

   

        

   

  

   
 

The degrees of F, F’ and G are ≤ D. The number of terms of each are  ≤  Dm.    

So, ( ) 2 ( ) ( ) 2 ( ) ( ').
m mD DH c H a H b H F H F   


 

  
2 2 22 ( 2 ( 1) ) ( 2 ( 1) ) 2 ( 2 ( 1) )2 2 2 1

by inductionSo, ( ) (2 ( ) ( ')) 2 ((2 )(2 )) 2 (2 ) .
m m m m m m m m mD D D D D DH G H F H F

         
22 2 ( 1) 1

2 2 2

2

2 2 ( 1) 1 2 2 ( 1) 1 2
do the arithmetic

So, ( ) 2 2

So, log ( ) 2 2 2 2 2 ,  for 2.

m m mD D

m m m m m m m

H G

H G D D



     

 

   



       ז
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
1For ( ,..., ) ,  let ( ) max ( ).

p

p ix x x Q H x H x    

 

,..,1

1 1

1 1 1

For [ ,..., ] and ( ,..., ) ,  ,  

let  G ( ,..., ) ( ,.., , ,..., ).
x xp

p

n p

p n p p n

G a t Q t t x x x Q p n

t t G x x t t




 

    


  

 

Proposition 7. 
1

1 ,...,H(G ) ( )(2 ( )) ,  where degree G  D. (See Proposition 4.)
n

p

D
x x H G H x



 
 

Proof. 
 


,..,1

1

1 1

1 1

1 1
( ,..., , ,... )

G [ ,..., ] is a polynomial whose coefficients may be indexed by ( ,..., ),  

and for each ( ,..., ),  have the form ... . (Has  monomials.)

Thus, 

x xp

p

p p n

p n p n

p
p n p

Q t t

a x x D


    

 

 


 








1 )1

,..,1

1 1 1

( ,...,

1
( ,..., ) ( ,..., , ,... )

 G ( ... ) . (Has  monomials.)p p n

x xp

p n p p n

n p
pa x x t D  


     



 

  

  

 
We must estimate the product of the heights of those coefficients (similar to Proposition 4). 
The height of each coefficient:  

1

1 1

1
( ,..., ) ( ,..., )

2 ( ) ( ) ... ( ) 2 ( ) ( ) .
p p

p

p p

D D D
pH a H x H x H a H x

 
   

    

 
Taking products of all coefficients: 
 

1

1 ,...,H(G ) 2 ( )( ( )) .
n n

p

D D
x x H G H x




 ז

 
Now for proof of Witness Theorem:  

 

 

1 1 , 1 1 ,
,

2

F( , )  F ,..., ,  ,  ...,  ,  ( ,..., ),  ( ,..., ), .

Let = ( ) and N be a positive integer satisfying :  log N 4 p n  4 .

p n p nx t x x t t a x t a Z

F

 
   

 

     

   

    

  


 

Let x= (x1, ..., xp) א Q p
. 

 

Choose w1 of largest height from {2N, x1
N,…, xp

N} and let wi+1 = wi
N , i =1,… , n. 

Then H(w1) >1 and H (wi+1) = H (wi)
N  >  H(wi). Let   w = (w1, …, wn),  

 

To show:  Fx(w) = 0 ฺ Fx≡ 0. 
-------------------------------------------------- 

For each j = 1,…, n  and   
1( ,..., )j n    we define a one variable polynomial 

jG


  so we can 

reduce to the 1-variable case:  

Define  

 

11

1

1 1

, 1 1
( ,..., )

( ,..., , ,..., )

( ) ... .j j

p

j j n

j
j jG t a x w w t 

 
  
    









 
 

So if    then  11

1 1, 1 1 , ,...,( ) ... (t ).n n

n

n
n n x w w nG t a x w w t F 

 


    

                    
11

, 1 1 1 1and ( ) ... ( ,..., , ).n nn
n n n x n nG w a x w w w F w w w 

 


     
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Lemma 2.  H(wj) > 2DH( 

jG


) where D = 2τ.  

***So, by the Corollary to Proposition 5, if  ( ) 0, then 0.j j
jG w G

 
    

Proof . 
Sufficient to show: H(wj) > 2DH(

1 1, ,..., jx w wF


) 

(since 

 

1 11

1 1

1

1 1

, ,..., , 1 1 1
( ,..., )

( ,..., , ,..., )

( ) ... ... ).j j j n

j

p

j j n

x w w j j j nF t a x w w t t t   
 

  
    

 





 



   

Or by Proposition 7, that:        
1

D
j 1 p 1 j 1H w  2 H F 2H x ,  ,  x ,  w , ,  w

nD 

    

Now by Proposition 6, letting m = p+n, it is sufficient to show: 
 

    
    

12( 2 )

12( 2 )

D 2
j j 1

D 2
j

H w  2 2 2H w  if j>1 or

H w  2 2 2max(2, H  if j=1.

n
m

nm

D

D
x












 

 
Take logs of LHS and RHS. 
If j >1,   
 log (LHS) = logH(wj) = NlogH(wj-1) 

 
  

  

2

2

(2 ) 1
j 1

(2 ) ( 1) ( 1)
j 1

log (RHS) = D + 2 (1 log H w

                 = 2  + 2 2 2 log H w

m m

m m m

D

   




 


 

 
 

2But, log 2 2( 1) .N m m       (Easy to check, noting m = p+n.) So LHS > RHS.  
(Similarly for case j=1 noting H(w1) = max (2, H(x))N.)  ז 
 

For  j = n, we have    and 11

1 1, 1 1 , ,...,( ) ... ( ).n

n

n n
n n x w w nG t a x w w t F t 

 


    

By Lemma 2,  we have ( ) 2 ( ).D n
nH w H G

 
So:  ( ) 0  0.n n

nG w G      
So:  

1 1 1 1, ,..., , ,...,( ) 0  0.
n nx w w n x w wF w F
 

     
 

So all the coefficients of 
1 1, ,..., nx w wF


must be 0, that is: for each n , 

 



11

1

1 1

, 1 1
( ,..., )

( ,..., , )

... 0n

p

n n

na x w w 
 

  
   










 

 

Continuing to s-1, s-2, …, 1 we obtain eventually for any   
1( ,..., )n    that ,

0.a x
 





Therefore, all coefficients of  Fx are = 0. Therefore Fx ≡ 0. ז 
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Outline Proof Witness Theorem 2. 
 
(Fast)  QuantifierElimination Theorem. (Fichtas,  Galligo and Morgenstern, 1990) 
Let K be and algebraically closed field and Φ a 1st order formula over K in prenex form. 
Let | Φ| be the length of Φ, r the number of quantifier blocks, n total # of variables, and  

  1
1

  2  degF  where {F}  are the polynomials occuring in .
s

s
i i i

i

 


     

Then Φ is equivalent to a quantifier free formula Ψ in which all polynomials have degree at most 
( ) (1)(log ( ))2 .

O r On    The number of polynomials occurring in Ψ is 
( )

( ( ) .
O rnO    

Moreover,  if  ch K = 0 and all the constants in Φ are integers of bit size at most L,  

the constants in Ψ are integers of bit size at most 
( ) (1)(log ( )2 .

O r OnL    
 
Comment. By quantifier elimination, every set definable by a 1st order formula Φ over K is a 
union of quasi-algebraic sets defined by systems of the type:  
P1(x) = 0, …, Pk(x) = 0, Q1(x)≠0, … , Qm(x) ≠0  where the Pi’s and Qj’s are polynomials in  
n variables x = (x1, …, x n)  over K. (So, if all constants in Φ are integers, then above gives bounds 
on each of the coefficients in the P’s and Q’s.) 
 
Lemma A. (Sontag,1996, also implicit in Heintz, Schnorr, 1980) 

ln
1 1

Let P: C  x  be a polynomial map. 

For N, let {( ,..., ) | [ ( ,.) 0 ( , ) 0 ... ( , ) 0]}.

p n

p
l l l

C C

l A u u C C P P u P u   



          
 

Then Al is a quasi-algebraic set of dimension at most p+l(n-1). 
So,  Ap+1 has dimension at most pn + n - 1 in Cpn + n

 ,  i.e. Ap+1 has positive co-dimension. 
So “most” sequences of length p+1 are correct test sequences for the family{xհ P(α, x)| α א Cp}. 
 
Lemma B. (Heintz, Schnor, 1980; Koiran 1997) 

Let Pא Z[X1, …, Xn] be a degree d poly with coefficients bounded by M in absolute value.   
Let w = (w1, …, wn) be any sequence of integers satisfying  

 k 1 d  
1 k k 1 M  1 and 1  M d 1  for k 2.w w w


       

Then, if P is not identically zero, P(w) ≠ 0. 
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Proof of Witness Theorem 2.  

Fix a straight line program of length ≤ v which uses p parameters and let P ={Pહ | α א Cp} be the 
family of polynomials computed by the straight-line program as α ranges over Cp. 

Let S be the set of correct test sequences of length p+1 for P. Then. 

  ( 1) p n 1
1, p 1 1u = u ,  u S  C   C   C [ ( ) 0 ( ) 0].p n p

i ix P u P x  
             

By adding v universally quantified variables for the values computed at each stage in the straight 
line program, the condition ( ) 0P x   can be expressed by a 1st order formula of length O(v). 

Similarly, for each of the p+1 conditions, ( ) 0iP u  . 

Now put the above formula in prenex formula with a single block of universal quantifiers and at 
most p + (n+v)(p+2) variables.  

By Quantifier Elimination, S is the union of basic quasi-algebraic sets S1, …, Sk.  

Since the map (α, x) հPα(x) is polynomial, by Lemma A, S is full dimensional.   

Therefore, one of the quasi-algebraic sets that make up S must be defined by inequations of the 
form:  Q1(u) ≠ 0, …, Qm(u) ≠ 0. 

By Quantifier Elimination, there is a 
(1)( )2

On v bound on the degree and bit size of the Qi’s.  

1 1Then, by Lemma B,  ( ,..., ) is a correct test sequence for W'(n,p,v).pu u   ז 

  


