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The Setting

Given an o-minimal structure

M = (M7 (C)C€C7 (f)f€.7:7 (R)RER’ <)

we have:

@ the category Def of definable spaces with continuous
definable maps.

@ the geometry of Def is called o-minimal geometry.

Examples (Special Cases of O-minimal Geometry)

e M= (R,0,1,+,-, <) - semi-algebraic geometry (includes real
algebraic geometry);

e M =(R,0,1,4+,,(f)fean, <) - globally sub-analytic
geometry;




General motivation of our work



General motivation of our work

Develop sheaf theory in the category Def:



General motivation of our work

Develop sheaf theory in the category Def:

Inspired by:



General motivation of our work

Develop sheaf theory in the category Def:

Inspired by:

e Verdier (locally compact topological spaces);



General motivation of our work

Develop sheaf theory in the category Def:

Inspired by:

e Verdier (locally compact topological spaces);
e Grothendieck (étale framework);



General motivation of our work

Develop sheaf theory in the category Def:

Inspired by:
e Verdier (locally compact topological spaces);
e Grothendieck (étale framework);

@ Delfs (real algebraic geometry).



General motivation of our work

Develop sheaf theory in the category Def:

Inspired by:
e Verdier (locally compact topological spaces);
e Grothendieck (étale framework);
@ Delfs (real algebraic geometry).

e Kashiwara-Schapira + L. Prelli (sub-analytic geometry);
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What is an o-minimal sheaf?

Let X be an object of Def and k a field. An o-minimal sheaf of
k-vector spaces on X a contravariant functor:

F : Op(Xgef) — Mod(k)
U—T(U;F)
(VcU)— (F(U)— F(V))

S'—>S‘V

where Xger is the o-minimal site on X. Satisfying the following
gluing conditions: for U € Op(Xyer) and {U;}jes € Cov(U) we
have the exact sequence

0 — F(U) — N F(U;) — Njkes F(U; N Uk)
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What is the o-minimal site on X7

Let X be an object of Def. The o-minimal site Xgof on X is the
data consisting of:

@ The category
Op(Xdef)
of open definable subsets of X with inclusions;

@ The collection of admissible coverings
Cov(U), U € Op(Xget)

such that {U;}jc; € Cov(U) if {U;}jey covers U and has a
finite sub-cover.
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Replacing the o-minimal site by the o-minimal spectrum

It is convenient to replace the o-minimal site Xger by the o-minimal
spectrum X of X:

o X is the set of ultrafilters of definable subsets of X equipped
with the topology generated by the open subsets of the form
U where U € Op(Xyef).

This tilde operation determines a functor

Def — Def.

If Ris ar.cfand X an affine real algebraic variety over R with
coordinate ring R[X], then X ~ SpecrR[X].
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Properties of the o-minimal spectrum

Proposition (Pillay)

The o-minimal spectrum X of a definable space X is Ty,
quasi-compact and a spectral topological spaces, i.e:

@ it has a basis of open quasi-compact subsets closed under
finite intersections.

@ each irreducible closed subset is the closure of a unique point.
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Canonical isomorphism

The tilde functor Def — Def determines morphisms of sites

vx : X — Xgef

given by the functor v§ : Op(Xjer) — Op(X) : U — U.
Theorem (E, Peatfield and Jones)

The functor Def — Def induces an isomorphism of categories
Mod(kx,.;) — Mod(kg) : F + F,

where Mod(ky) is the category of sheaves of k-modules on the

topological space X.

It is the inverse image z&l and its inverse is the direct image vx,.
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The canonical isomorphism extends to the derived categories

D*(kxdef) - D*(k)?) =

where D*(kz) = D*(Mod(ky)) and (* = b, +, —).

Corollary

The functors

RHokadcf(.7 .) g Di(kxdef)op x D+(kXdef) - D+(k)7
RHokadef (.7 .) : Di(kxdef)op X D+(kXdef) — D+(kXdef)’

F D*(kydcf) - D*(kXdcf) (* = b, +, _)’
Rf. : D (kxy.) — DT (kv,.,),

o @f 0D (kxye) X D*(kxye) — D*(kxyr)  (x = by+,-)

commute with the tilde functor.
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Canonical isomorphism and proofs

So we can develop o-minimal sheaf cohomology by setting
H*(X; F) := H*(X; F)

where X is a definable space and F is a sheaf in Mod(kx,,,).
Moreover, we can proof properties of our operations on o-minimal
sheaves by going to the tilde world and then came back:

Theorems (E, Peatfield and Jones)

@ Vanishing Theorem.
o Vietoris-Begle Theorem.

o Eilenberg-Steenrod Axioms.

Comments about assumptions and proof technique in the tilde
world...






Theorems (E, Peatfield and Jones + E, L. Prelli)

@ Base Change Theorem:
g 'REF ~ Rfl(g"71F).
@ Projection Formula:
REF @iy, G = RE(F @k, F1G).
@ Universal Coefficients Formula:
RI(X; m) ~ RT(X; k) ®x m.

@ Kiinneth Formula:

RI(X x Y;[®kxd . m) ~ R[(X; 1) @k RT(Y; m).
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Families of definably normal supports

Suppose that X is an object of Def which is definably normal and
definably locally compact. Then the collection ¢ of definably
compact subsets of X is a family of definably normal supports, i.e:

@ every closed definable subset of a member of c is in c;

@ c is closed under finite unions;

@ each element of ¢ is definably normal;

@ each element of ¢ has a closed definable neighborhood which
isin c.

(These assumptions will be assumed below.)
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c-soft sheaves

We say that F € Mod(kx,,,) is c-soft if the restriction
F(X;F)—T(S:Fs)

is surjective for every S € c.

Theorem (E, L. Prelli)

The full additive subcategory of Mod(kx,,,) of c-soft k-sheaves is:
o (X, e)-injective;

@ stable under filtrant inductive limits;

@ stable under e Ok F for every F € Mod(kx,,,)-

Note: X has cohomological c-dimension bounded by dim X, i.e.,
HZ(X; F) =0 for all g > dim X.
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Sheaves of linear forms

For F € Mod(kx,,,) we define a presheaf F" by
F(U; FY)=T(U;F)".

If G € Mod(kx,,,) is c-soft then:
e GV € Mod(kx,,,);
e Hom(F; GY) ~T(X; F®kxdef G)Y;

e GV is injective in Mod(kx,,)-
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Verdier Duality

Passing to the derived category we obtain:

Theorem (E, L. Prelli)

There exists D* in D" (kx,.,) and a natural isomorphism

RHomy, (F*,D*) ~ RHomy (Rl (X, F*), k)

as F* varies through D (kx,.,)-
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Poincaré and Alexander duality

The cohomological k-sheaves H~PD* are the sheafifications of the
presheaves

U — HP(U; kx) V.

For p = cohomological c-dimension of X these are k-sheaves.
Hence:

Theorems (E, L. Prelli)

Let X be definable manifold of dimension n.

@ If X has an orientation k-sheaf Orx, then
HP(X;Orx) ~ HI"P(X; k)".

o If X is k-orientable and Z is a closed definable subset, then

H2(X; kx) ~ HIP(Z; k) V.

V.
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What is an orientation k-sheaf?

Let X be a definable manifold of dimension n. We say that X has
an orientation k-sheaf if for every U € Op(Xgef) there exists
{U;}jes € Cov(U) such that for each j we have

k if p=n
HE(Uji kx) =
0 if p# n.

If X has an orientation k-sheaf, we call the k-sheaf Orx on X

with sections
F(U;Orx) = HX(U; kx) "

the orientation k-sheaf on X. If Orx ~ kx, then we say that X is
k-orientable.
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When do orientation k-sheaves exist?

Suppose that

M = (M,0,+,<,(¢)cec, (F)rer, (R)rRer)

is an o-minimal expansion of an ordered group. Then every
definable manifold has an orientation k-sheaf.
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Do we have compatibility?

Suppose that
M - (M7 07 +7 < (C)CEC7 (f)f€F7 (R)RER)

is an o-minimal expansion of a real closed field and X is a
Hausdorff definable manifold.

@ Do we have a duality compatible with o-minimal singular
homology?

@ Orientability with respect to cohomology is compatible with
orientability with respect to homology?
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Yes there is compatibility

Suppose that M is an o-minimal expansion of a real closed field
and X is a Hausdorff definable manifold of dimension n.

If L C K C X are closed definable sets with K — L closed in X — L,
then there is an isomorphism

HI(K\ L; k) — Hp_o(X \ L, X \ K; k)

for all g € Z which is natural with respect to inclusions.

”
Corollary

Hence, X is k-orientable with respect to homology if and only if X
is k-orientable with respect to cohomology.
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What is the main application?

We assume that M = (M, <,...) is a sufficiently saturated
o-minimal structure with definable Skolem functions.

Theorem (E and Terzo)

Let G be a 7Z/qZ-orientable, definably connected, definably
compact, definable group, where g is some sufficiently large prime
number. Then there exists a smallest type definable normal
subgroup G% of G of bounded index such that G/G% with the
logic topology is a connected, compact, Lie group. Moreover, the
following hold:

Q If G is abelian then G% is divisible and torsion free;
Q@ dimG = dimG/GOO.
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What is this main application?

Without the orientability assumption, this is:

o Pillay's conjecture for definably compact groups;
@ A non-standard version of Hilbert's 5° problem for locally
compact groups.

Previously known cases:

o Field case: [Hrushovski, Peterzil and Pillay].
@ Semi-bounded case: [Peterzil].

@ Linear case: [Eleftheriou and Starchenko].
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How is duality used in this application?

Model theoretic work by Hrushovski, Peterzil and Pillay as well as
some observations by E and Terzo reduce the conjecture to
proving:

Theorem (E and Terzo)

Let G be a Z/qZ-orientable, definably connected, definably
compact, definable abelian group, where g is some sufficiently large
prime number. Then the subgroup of m-torsion points of G is

G[m] ~ (Z/mzZ)¥™C,

This result was already known:

o Field case: [E and Otero].
@ Semi-bounded case: [Peterzil].

@ Linear case: [Eleftheriou, Starchenko].
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THE END



