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Filters in Time-frequency space

5. Filters in time-frequency space

5.1. Time-Frequency analysis
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The Fourier Transform (1807)

F(K)= j f (t) exp(—i 27kt i

+or

f(t)= | F(k)exp(i2zkt)dt
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The Fourier Transform (FT)
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Time/Spatial varying

Corrupted by noise

How can we characterize a signal simultaneously in
time and frequency?

---- the aim of time-frequency analysis

Atomic decomposition

Linearly decompose a signal over a set of elementary
“pbuilding blocks” which would be reasonably ‘localized”
in both time and frequency

[ f (t)b;, (t)dk

f(t)= [ _[/th (r.k)b,, (t) dzdk

where b, (+) is some analysis fucntion deduced from
the "synthesis" function b_, (<), making 4, (z,k) a (linear)

time-frequency representation of f (t).

The Gabor Transform (1946)

Also called the short-time or windowed FT

G(r,k)= f f(t)w (t—z)exp(-i2zkt)dt

where, e.g., w can be the Gaussian function

—exp

w(t-7)= ﬁ [”2,




lime-Frequency Representation
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How accurate can the GT be ?

Width of time window Smaller

Heisenberg Inequality
Also called the Uncertainty Principle:

Resolution in time and frequency cannot be
arbitrarily small, because their product is
bounded below: 1
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Next Step
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There always is a trade off between At and Ak.

Fortunately, many signals consist of
low frequencies of long duration and/or
high frequencies of short duration
The next logical step is to use a windowing
technique with variable sizes:
long time window for better Ak at low frequencies,
short time window for better At at high-
frequencies.

The Continuous Wavelet Transform (CWT)

Wavelets: small waves

The CWT decomposes a signal into the scaled and shifted
replica of the Mother wavelet (a waveform of effectively limited
duration and zero mean)

The Continuous Wavelet Transform

Wavelets: small waves (1984)

lon)a

CW (z,5)=

1 T
where “'l W { s j is the scaled and shifted replica

of the Mother wavelet, a waveform satisfying
o lw (k)
c, = Jbg\)dk < o0

Effectively, W(0) = 0 and W(k)—0 as k —o0




The Continuous Wavelet Transform
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Gabor Transform:
Time-frequency
Representation

The ST is a
Multi-scale
Time-frequency Analysis

The Stockwell Transform

S(r,k):if f ()9 (t—r,1/ |k|)exp(~i2zkt)dt

where the window function g is the Gaussian function
with frequency-dependent window width,

/( _ 2172
g(t—171/k)= oy e_\‘p[(r:)/\]

Stockwell (1996) IEEE T Signal Processing, V44




The Stockwell Transform (ST)
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The ST and Morlet wavelets

With the complex Morlet mother wavelet

exp[ > exp (i2zv,t),

1 /
N2 \
the Morlet wavelet transform (MWT) is defined as

MW(r,a')\/l;f f(t)y" \%\J dt.

where a =l?D We can show that

) . i27ke C 1
S(T,k):\/iez'k‘l\/'/;[ﬂ?}- Du, Wong, Zhu (2006)

Gibson, Lamoureux, Margrave (2006)
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The ST and Morlet wavelets

Ampitude

Ampitude
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Frequency

(a) Small oscillations occur for small frequencies

(b) The absolute referenced phase information is retained in
the ST, while the MWT gives relative referenced phase
information.

Liu, Zhu (2007)
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Many different time-frequency transforms
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Applications of Time-frequency Representations
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Time-frequency

Analyze the raw signal in the (1, k) domain to identify its

local characteristics

Remove noise from signal or separate and analyze

specific components

Extract Features from its time-frequency representation
Extension to two or higher dimensions; ...

Correct motion artifacts in fMRI




Functional MRI (fMRI)

Visual Stimulation Test
Artifact

corrections
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Statistical
analysis

Flashing Checkerboard
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Neural — MR signal
activation changes

Activation Map

fMRI Signal

< 5% of collected MR data is related to neural activities

triggered by fMRI experiment
Limited data is also corrupted by noise
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How can we correct unpredictable motion artifacts to improve

the accuracy and reproducibility in fMRI analysis?

fMRI Visual Stimulation Experiment

Experiment paradigm

e

Expected fMRI signal of the activated pixels
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Time

fMRI signal

Zhu, Goodyear, et al. Med Phys 30:1134-1141(2003)
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ST Correction for Motion Artifacts
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Filtering using wavelet transforms

Discrete Wavelet Transforms
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DECOMPOSITION RECONSTRUCTION

Fig. 4.2 Mustration of wavelet-based sipnal decomposition and reconstrction
£ &—lowpass filters; il — lughpass filters;
iz downsampling (decimanon by 2); eh upsampling,

If the high-pass and low-pass filters satisfy certain conditions, we
can downsample the details by two. This is because max freq is
halved according to Nyquist’s rule
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DWT: Multi-level decomposition

wavelet decomposition tree

The DWT gives samples of the CWT

LLLL | LLLH

LLHL | LLHH

Fig. 4.4 One-scale decomposiion (left), two-scale decomposinon (nght)
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Thermal Noise = White Noise

Gaussian prob. distribution

Denoising

Wavelet-based Wiener Filter

he advent of avent-related functi gneti im-
aging (fMRI) has resulted in many exciting studies that have
exploited its unique capability. However, the utility of event-
elated fMRI is still limited by several technical difficulties. One
significant imitation in event-relatad fMRI is the low signal-to-

oise ratio (SMR). In this work, a method based on Wiener

iltering in the let d in is developed and d d
or denecising event-related fMRI data. Application of the tech-

jque to simul 1 and experi tal data d s that
the technique is effective in reducing noise while preserving

eurcnal activity-induced response. Magn Reson Med 44:

46-T57, 2000. © 2000 Wiley-Liss, Inc.

Key words: event-related fMRI; dencising; stationary wavelet
transform; Wiener filter




Wavelet-based Wiener Filter

In the wavelet domain, the desired Wiener filter takes the
form:

Hif ) = Plj. m) e

. )= Pyj. n) + Pfj, n) [13]

where P.(j.n) is the power density corresponding to the
detailed component of true signal x in location n at reso-
lution level j. P_[j.n) is the corres ponding term of the noise.
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Contrast Enhancement by
Multiscale and Nonlinear

Operators
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Dual Tree Complex Wavelet based Regularized Deconvolution
for Medical Images

R Munsgesan |, V, Thavavel and B Meenakshi Stndaram’

Sharpening Enhancement of Digitized Mammograms
with Complex Symmetric Daubechies Wavelets'
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