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Outlines

¢ Image Quality

® Gray value transforms

® Histogram processing

® Filters in image space

® Filters in Fourier space

® Filters in Time-frequency space
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5. Filters in Fourier space

5.1. The Fourier transforms
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* In 1807, his introductory
manuscript “Theory of the
propagation of heat in solid
bodies”

* In 1822, published "Theacuteorie
analytique de la chaleur"

« Established the mathematical
u =ku theory of heat diffusion

* Introduced the representation of a
function as a series of sines and
cosines known as Fourier series

Elena Prestini: evolution of applied harmonic analysis (2004)
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I ' The Fourier Transform (1807)
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l ' The Fourier Transform

f(x) Fourier transform F(u) — ff(x) exp(* j2r ux) dx

fx)= ]Z Fu)exp(j27 ux) s F(t)

Inverser Fourier Transform

Joseph Fourier
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I ' The Fourier Transform

The FT of a function f(t) is in general complex:
F(u)=Re(u)+jIm(u)
Fourier spectrum: ‘F(u)‘z ’Rez(u)+lm2(u)

Power spectrum (or spectral density): |F (u |2

Phase angle: d)(u): tan{ Im(u)J
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High frequencies
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I ' Some Fourier Properties

Scaling:  h(ax) =~ —— ‘;‘ H{%J
Shifing:  h(x—x,) ——— H(u)e "
h(x)>™ 0 ———  Hu-u,)
Convolution:  4(x)®h,(x) ——— HilLH.()
Iy (x Yo (x) H, ()@ H, (1)
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Convolution Theorem

Definition - Convolution:

KOO~ [ K-

h ®h,=h, ®h,
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Convolution with impluse function

0
Lo

Convolution= Blurring

Convolving a signal with a smooth weighting function can be
used to smooth a signal




What happens in 2D?

The 2D Fourier Transform

YORK

The 2D Fourier Transform

F(kx, ky): TTf(x» y)e—jzzrkxx dx- ¢ 127k dy

]

f (x, y):TTF(kx, ky}ﬂﬂ'kxx dk. L dk,

—00—00
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I ' Review of Fourier Theory
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What are Spatial Frequencies?

kx

Fourier Spectrum
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I ' What's wrong?

VA JiN

What hgppened Incorrect
to the image? Fourier spectra
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Low Spatial Frequencies

’ FT
- )

Basic structure

Low frequencies
of an Image
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I ' High Spatial Frequencies

Edges of

an image High frequencies
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I ' Amplitude

PG 43
b
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I ' Amplitude
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FIGURE 4.26 Phase angle array corresponding (a) b
in Fig. 4.24(a), {b) to the translaied image in Fig. 4
ig.425(c).

the imsage of the centered rectangle
S{a), and {c) to the rotated image in

Ficlds, 08, HmZhu

Amplitude and Phase

abe
def
FIGURE 4.27 (a) Woman, (h) Phase angle. (<) Woman reconstructed using only the
phase angle. (d) Woman teconstructed using only the spectrum. (¢} Bee
wsing the phase angle corresponding 10 the woman and the spectrum corresponding o
the rectangle in Fig. 4.24(2).{f) Reconstruction using the phase of the rectangle and the
spectrum of the w
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Basic properties still hold

Naie DFT Pairs

1) Syme See Table 4.1

propertics
2) Linearity afyix. ¥) + bfsix, y) = aFyiu, v) + bFiiw, v)
3) Translation fix, yhePrimaisonniN g Fia = )

{general) Fix = xgy = yy) o Flu, pjeriesdd )
4) Transdation Flx =11 o= Fin = M

1o genter of fix— M/2Ly— N2ies F

the frequency

&+ Hgh

T=roosH Y= Fsind Mmwomg B wsing

Flr. + i) & Flaw

Fix. ¥y hhix, y) o= Fi, o) (s, v)
Fix. yhhix, y) o Fite, o) % B v)

{ Coutinued)
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I l Basic properties still hold
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MR Image Reconstruction

YORK

“10 Discrete FT

s(xpfix) Sta)F(u)

Object space and Fourier space is kind of
“inverse” relationship

Fields, 08, HmZhu
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“2D Discrete FT

Field of View (FOV)

Sampling
)
Siuy
aliasing
|
4
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I ' Example: Spatial Aliasing
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Nyquist Sampling Criterion

S0 FlupS(u)
I
Ax
To avoid aliasing, Lo ie Ar< b
2Ax ' 2w
w: Nyquist frequency 2w: Nyquist rate

That is, the sampling rate needs to be at least twice the max

frequency of the function: 1
—2>2w
Ax
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Infinite Sampling
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u How much data is needed ?

Shannon Sampling Theorem

If h(t) is a band-limited continuous function,

i.e. there is a finite positive w, such that
H(u) =0 for |u| >w

then h(t) can completely recover from

samples whose spacing satisfies Nyquist

criterion .
z ;
_:{l\/. ' _N_./;X_-,
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Warning: Using DFT allows us to perform convolution, but the discrete
functions are treated as periodic, with a periodic equal to the length of the
functions. Wrap-around error could happen.

W fim: fim

Solution: Assume that f and h consist of A and B points,
respectively. We append zeros to both so that they have the
identical periods P >= A+B - 1.

e 4

Solution: We zero-extends f(x, y) and h(x, y) so that both have size
of P x Qwhere P >= A+C - 1 and Q >= B+D-1.
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5. Filters in Fourier space

YORK

redefine THe POSSIBLE

5.2. Filters in Fourier space

H(u, v) is called filter or filter transfer function, which
suppresses certain frequencies while leaving the others

unchanged.

Frequency domain fllering operation

I.-' Pre
i processing

Oy

fixy)
Input

g

FIGURE 4.5 Ttasic steps for filtering in the frequency domain

f(x,y)®h(x,y) <F(uv)H(uy)

L Filler Inverse
- Il = funetion L,‘- Fourier
— r|' Hiu, vy transform

- Flu,v) Hiu, v)pFlu, vy

a b

FIGURE 4.29 (a)
(i) (Orriginal @

ourtesy of Dr.

image of a damaged integrated circuit, (b) Fourier spectrum of
M. Hudak. Brockhouse Institute for Materials

Research, McMaster University, Hamilton, Ontario, Canada. )
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Low pass filters:

attenuates high freq. while passing low freq (smoothing, blurring)
High pass filters:

attenuates low freq while passing high freq (sharpening)

YORK
I ' Low pass filters
TABLE 4.4
Lowpass filters. £, is the cutoff frequency and a is the order of the Butterworth filker
Idewl Butterworth Cawssian
Hiw,v) ]l.-'. ::L':::‘: ﬁ Hiwn) = ||’|...I.-. s Hi, v) = ¢ Hinsiiss
Fields, 08, HmZhu
YORK
I ' Low pass filters

e
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Ideal Low Pass Filter

a

FOGAIRE WAD () Perapuective phot of

TR 443
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I ' Ideal low pass filter
conmEE
I
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Butterworth low pass filters
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I ' Gaussian low pass filters

I;(.'I;AII 447 -... Pergeutive .'-:I -I-II:'I n et
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Ideal Butterworth Gaussian
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High pass filters

URIvER
T
Hyp (Uv)=1-H (u,v)
TABLE 4.5
Highpass filters. Dy is the cutoffl frequency and # is the order of ihe Butterworih filter.
Tdeal Butierworth Ganssian
0 i Dwe) = D 1 3 :
; g . - . - D20
Hiu, v) : | D) > D H( ) = T B Hiuv) =1 — e

Fields, 08, HmZhu
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High pass filters
@
.
»

YORK
I ' Spatial representations of the high pass filters

PIGURE .53 Spatial represcstal

Fields, 08, HmZhu
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FRGURE &34 Hesilis of Bighypass I [Py e P TR p—— T S

YORK

I ' An example of high pass filter

abe

FIGURE 4.57 (a) Thumb print. (b) Result of highpass ltering (a). (¢) Resull of
(Original image courtesy of the US, National Institute of Standards

thre:
and Techng
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Unshark masking and
High-frequency emphasis filter

The mask in the unsharp masking can be defined as
nasc (X.¥) = T (x.¥) = fio (x,y)
where fi, (X,y)=F [ H, (uv)F(uv)].
Then the final filtered image can be expressed as
g(xy)=F(XY)+k* Gy (xY)
=FH{[1+k*H,p (UV)]F (uv)}

More general formulation of the high-frequency emphasis filtering

g(x,y)=F"* {[kl +hy*Hyp (UV) JF (u v)}
where k;, k, >0.

Fields, 08, HmZhu
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High-frequency emphasis filter

Fields, 08, HmZhu
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I ' Bandreject filters

umi

TABLE 4.6

Barsdrejoct fillers. W is the widih of the band, £ the distance Dju, ) from the center of the filter, I i the
cutofl [requency, and o is the order of the Butterworth filter. We show [ instead of Na, ¥) o simplity the
wotation in the table.
[ Heal Butterworth Gassian
W v 1

ot =p=p % Hwo = oo
Hiu.v) 2 2 . bW Hiwg) = 1 = e

1 otherwise -

Fields, 08, HmZhu
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I ' An Example of Bandreject Filter

T,
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5. Filters in Fourier space

5.3. Deconvolution

YORK

I I redefine Tve POSSIBLE
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Image restoration and reconstruction

UWIVENSITE
UNIVERSITY

FIGURE 5.1
A model of the Degradatn l
Ly function - fi
i I
r.y)
DEGRADATION RESTORATION

The measured image can be considered as
g(x.y)=h(x,y)® f (x,y)+n(x,y)
| Fr
G(u,v)=H(uv)F(uv)+N(uyv)

Fields, 08, HmZhu

YORK
Degraded images

UNIVERSITY

Fields, 08, HnZhu
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Inverse filter

The measured image can be considered as
g(x,y)=h(xy)® f(x,y)+n(xy)
| Fr
G(u,v)=H(u,v)F(uv)+N(uyv)

Given the Fourier response of the degradating function
H (u,v), the true image can be estimated by
G(uv) N (u,v)

Fuv)= H(u,v) =F(uy) H (u,v)
YORK
Inverse filter
YORK
Wiener filter (1942)

The Wiener filter aims to find an estimate to the
true image by minimizing their mean square error.
In the Fourier domain, the spectrum of the estimated image is

= (vl = H* (u,v) v
S e e
|H () +‘F(u,v)‘2
] ‘H(u,v)‘2 | y
‘ h H(U|V)‘H(u,v)‘2+K_G( V)

23



I ' Wiener filter
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Wiener filter

UWIVENSITE
UNIVERSITY
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FIGURE 5.29 (5} S:bit im.
€} i ol Wienes fill

Ficlds, 08, HmzI (&

5. Filters in Fourier space

5.4. Applications
YORK

I I redefine Ter POSSIBLE
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CT Image Reconstruction

Vouel
N -

Xeray Tube
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Do by 3 Pr=—rn Ly

CT Image Reconstruction

Sieghe Profik i
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i
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[ —
Dietecter
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Neray Tube
» Raelie diemse
— s

Back Projection

Filtered Back Projection

Aogare L Aty
Tranamisaen Exa Coerecticas

Feasier
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Figure 2.2: T1 weighted brain scans showing diagonal non-uniformity, brighter at the

top left and bottom right. The gray scale has been compressed to exaggerate the

intensity variations

« Intensity non-uniformity, “bias” field, shading
artifacts, RF inhomogeneity...
« Spatial variation of the image signal unrelated to

anatomic information

25
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I ' Causes and effect

Major factors:
— Non-uniform reception sensitivity
(multiplicative field, slow varying)
— Inhomogeneity of RF excitation
(non-multiplicative field; acquisition)
— RF penetration and standing wave effects
(image acquisition)

Minor factors:
— eddy currents driven by the switching of field gradients
— Mis-tuning of the RF coil
— Bandwidth filtering of the data
— Geometric distortion (negligible, 1%)

Fields, 08, HmZhu
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u Effects

» Cause 10% - 30% variation of intensity.

« Reduce accuracy of tissue segmentation, brain-
surface extraction

« The higher the field strength, the prominent the
intensity non-uniformity

Fields, 08, HmZhu

Non-uniformity correction Methods
(N3 Method)

TIET TRANRACTINS 06 MEEACAL DMADSS0, VOL. 17, 0 1 FENRUARY 198

A Nonparametric Method for Automatic Correction
of Intensity Nonuniformity in MRI Data

Jobn G. Sled.* Alex P. Zipdeubos. Mewber, JEEE, and Alm €. Evans

Fields, 08, HmZhu
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Assumptions and Tasks

Assumption
+ Bias field varies smoothly across images

* Model of intensity non-uniformity as a multiplicative
field corrupting the measured intensities

Tasks

+ To estimate the bias field and true tissue intensity
distribution

* To remove the bias field

felds, 08, HmZhu
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Overview of Methods

Analytic modeling (too simple, impractical)
Adjust acquisition protocols
Data-driven post-processing:

use filter to estimate a multiplicative non-
uniformity field & divide it from the image

eliminate the low frequency components
of anatomy when estimating non- uniformity

(tissue intensity, spatial homogeneity, field
based models)

Fields, 08, HmZhu
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Overview of the N3 method

Nonuniformity Model

Smooth multiplicative field

vix :llX_f X )+n(X
) / ( )I (x) \( )
true? k

bias field? white noise?

measured

Fields, 08, HmZhu
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I ' Noise issue

v(x)=u(X)f (x)+n(x)
-1/

Fields, 08, HmZhu

YORK

I ' Overview of the N3 method

S()=ii() fx)  i)=log()

Let U, V, and F be the probability densities of U, v,

and f respectively.

V(©)=F®)*U()

Non-uniformity distribution F blurs the histogram of the
data U

The task is to restore U by sharpening V

Fields, 08, HmZhu

Estimating F

VE)={F )

ue)
f\ ] o

[

s :.__1_’.‘, 3
Tl D

Figure 4.1: Probability densities for non-uniformity Gelds estimated from white mat-
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Estimating F

VO)HFQ)UE)

* Assume that the distribution of F is Gaussian

» Searching an optimal U by finding a Gaussian
distributed F having zero mean and given variance

* In other word, the space of all distributions U is
collapsed down to a single dimension, the width of
the F distribution

Fields, 08, HmZhu
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Estimating F

VE)=FO ) UE)

« The Gaussian distributed F can be estimated
incrementally by convolving narrow Gaussians

* Thus, U can be searched iteratively by deconvolving
narrow Gaussians

YORK

I ' Estimating U

Vv (V)= Fi\?) ®U(V)
V(k)=F(k)eU(k)
U= Tz

Fields, 08, HmZhu Constant term to avoid zero division
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I l Estimating the log field

« Given the distributions F and U, estimate the
corresponding field 7. at a given single
A fe
measurement

« We assume that the field is smooth. Therefore, we smooth
it to obtain an estimated field based on all of the
measurements in a neighborhood location x

+ Correct the original image , (x)=7,,(x)- ]A‘A(G(x))

Fields, 08, HmZhu

N3 Algorithm
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I ' 3D volume example 1

UWIVENSITE
SIS ITY

) ) e
LY (o] ]

Fig. 12 Insensity nessmiformity comecticn of a T1 weighted 27-scan av-
eraged pradent-echo MR sean: (1) and () mansamal a=d sagimal views aof
mcemeeted dana; (b and (e) nonuniformety feld extimased by the N3 method:

Fields, 08, HmZhu fe) and {f) correcied data.
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l 3D volume example 2

(dh ] in

Fig 13 Intemily sosuniformsty conection of 3 swface codl ME scan
{a) and (d) transaxial and sapittal views of uncomected data; (b) and (&)

T vomsssfoumity field estimated by the N3 method, {c) and (1) comecied data.
ields, 08, HmZhu
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