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Outlines

® Image Quality

® Gray value transforms

® Histogram processing

® Transforms in image space

® Transforms in Fourier space

® Transforms in Time-frequency space
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4. Transform in image space

4.1. Mechanics of spatial filters
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The mechanics of spatial filters

A spatial filter consists of

1. A neighborhood (typically a small rectangle or
square)

2. A predefined operation that is performed on the
image pixels encompassed by the neighborhood

If the operation is linear, then it is called linear
spatial filter; otherwise, it is nonlinear.
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The mechanics of spatial filters

Let f(x,y) bean original image. At any point (x,y) inthe
image, the filtered image g(x,y) of a linear spatial filter of
size 3x3is
g(xy) =w(-1-1) f (x-1,y—1)+w(-L0) f (x-Ly)+...
+w(0,0) f(x,y)+..+w(L1) f (x+Ly+1).
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The mechanics of spatial filters

For a mask of an odd size mxn, where m=2a+1and n=2b+1.
In general, the linear spatial filtering of animage f (x,y) with the
filter of size mxn is

g(xy)= iiw(s,t)f (x+s,y+t)

s=at=->bh

for every pixel (x,y) inf.
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The mechanics of spatial filters

For a mask of an odd size mxn, where m=2a+1and n=2b+1.
In general, the linear spatial filtering of animage f (x,y) with the
filter of size mxn is

g(xy)= inW(s,t)f (x+s,y+t)

s=—at=-h

for every pixel (x,y) inf.
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Correlation and Convolution

The filtered image can be expressed as the correlation
of w(x,y) and f (x,y)

g(xy)= iiw(s,t)f (x+s,y+t)=w(x,y)* f(x,y).

s=—at=—b

Note that the convolution of w(x,y) and f (x,y)is defined as

égw(s,t)f (x=s,y—t)=w(x,y)®f(xy).
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FIGURE .39 Tlustration of 1

FIGURE 3.30

4. Transform in image space

4.2 Blurring
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I ' Image Blurring
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I ' Image Blurring
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I ' Image Blurring
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I ' But, sometimes one prefers to have blurred
images...

4. Transform in image space

4.3 Blurring filters
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Averaging (or box) filter

For a mask of size 3x3, the value of the filtered image g
at the pixel(x,y) is

1 9
Yoy =§§fk'
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Weighted Averaging filter

For a mask of size 3x3, the value of the filtered image g
at the pixel(x,y) is

6, =1—16(f1+2f2+f3+2f4+4f5+2f6+ f42f,+1,).
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I ' Effect of average filtering
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I ' Get a gross representation of objects of interest
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Gaussian filter

Gaussian filter is a sample of the Gaussian function
which has the basic form:

x+y?

e 20

w(x,y)=
For example,
0.0113 0.0838 0.0113

W =| 0.0838 0.6193 0.0838
0.0113 0.0838 0.0113

276°
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Gaussian filter
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4. Transform in image space

4.4 Sharpening
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Sharpening an image

Sharpening: the principal objective of sharpening
is to highlight transitions in intensity

« While smoothing is accomplished in the spatial
domain by pixel averaging in a neighborhood (or
spatial integration), sharpening can be done by
spatial differentiation
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I ' Derivatives and Differences

The derivatives of a digital image are usually defined
in terms of differences.

We approximate the 1st order derivatives by
of
—=f(x+1)-f(x
= 1 (D)= 1 (x)
and the 2nd order derivatives by
o' f

o f(x+1)-2f(x)+ f(x-1)

Fields, 08, HmZhu

YORK
Illustration of derivatives in a 1-D
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Properties of derivatives

« The 1stderivatives are
a) zero in areas of constant
b) nonzero at the onset of an intensity step or ramp
c) nonzero along ramps

¢ The 2nd derivatives are
a) zero in areas of constant

b) nonzero at the onset of an intensity step or ramp
c) zero along ramps if constant slopes
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Outline

®|aplacian filter
®Unsharp masking, highboost filtering
®Gradient filter
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Laplacian filters

The Laplacian for a function f (x,y) is defined as
o' f +52f
ox° ayz
where
o*f
o
o f
W: f(x,y+1)+f(x,y-1)-2f(x,y).
The discrete Laplacian is
o't o°f
P + o =f(x+Ly)+ f(x=Ly)+ f(x,y+1)+ f (x,y-1)-4f(x,y)
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Laplacian filters

e 137
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Laplacian filters

de
FIGURE 3.38
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Laplacian filters

Because the Laplacian is a derivative operator, it highlights
the intensity discontinuous in an image and de-emphasizes the
regions with slowing varying intensity levels. It produces grayish
edge lines and discontinuities, superimposed on a dark, featureless
background. Thus, we can get a better sharpened image by
2 2
g(xy) =f (x,y)+c[%+%j

where ¢ = -1 if the center value in the filter is negative; otherwise, c = 1;
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Unsharpen Masking (k=1) and

Highboost Filtering (k>1)

A process is often used for the printing and publishing
industry to sharpen images, involving subtracting an
unsharp (smoothed) version of an image from its
original: o
- Blurthe originalimage  f(x,y)

Subtract the blurred image from the original (unsharp
mask) —
gmask (X’y) = f (X’y)_ f (X’y)

Add the mask to the original

g(xvy): f le)+k gmask(x’y)
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I § Mechanics of Unsharpen Masking

b
Original signal -
ﬁl

Sharpened signal
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u Example
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Gradient

Another tool to finding edges at a location (x, y) of an
image f(x,y) is the gradient

of

; a
Vf:grad(f)z{fx}: g;(
y _—

oy

which points in the direction of the greatest rate of
change of f at (x,y).
The magnitude of the vector grad(f) can be defined as

M(x, y)=yf7+ 1]

1€.,.the value of the rate of change in the direction of the gradient.

YORK

' Gradient

The magnitude of the vector grad(f) can be defined as
M(x, y)=4 T2+ 7,
ie., the value of the rate of change in the direction of the gradient.
The magnitude of the gradient is not a linear operator, but it is rotational
invariant (i.e, isotropic).
In some implementation, it is easier to approximate the
square root operations by absolution values
M(x, y)=~| fx\+‘fy‘
which preserves the relative change in intensity, but the isotropic property
is lost in general.
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I l Laplacian and Gradient

UWIVENSITE
WIVERSITY

= The Laplacian, being a 2" order derivative
operator, is superior in enhancing fine details.

« The gradient operator, being the 15t order
derivative, has stronger average response for
significant intensity transitions than does the
Laplacian
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Roberts cross-gradient operators

Roberts (1965) developed the cross differences
f,=2,—2; and f,=2,-1,

The magnitude of the gradient is approximated by
M(X, Y) = |25 = 25| +[2, — 2]

which can be implemented using two linear filter masks
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Prewitt Operators (1970)

Approximation to the gradient in a 3 by 3 neighborhood
centered at z; are as follows:
fo=(z+2,+2) (2, +2,+2,)
and
f=(z,+2,+2,)-(2,+2,+12,)
The magnitude of the gradient is approximated by Prewitt operator
M(x, y) z‘(z7 +2,+25)—(z,+2, +za)‘
4—‘(23 +22,+2,)— (3, + 22, +z7)‘
Note that the weight value 2 in the center coefficient is to achieve
some smoothing by giving some importance to the center point.
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' Sobel Operators

Approximation to the gradient in a 3 by 3 neighborhood
centered at z, are as follows:
fo=(2,+22,+2,)—(2,+22,+12;)
and
f,=(2+22,+2,)-(2,+22,+2;)
The magnitude of the gradient is approximated by Sobel operator
M(X, y) =|(z, +22, +2,) (2, + 22, + 1, )|
+‘(23+226 +2,)—(z,+2z, +z7)‘
Note that the weight value 2 in the center coefficient is to achieve
some smoothing by giving some importance to the center point.
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I ' Gradient often used for inspection

r
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4. Transform in image space

4.5 Combining spatial enhancement
methods
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I ' Combining different filters

(a) Quite often one requires applications of several
filtering techniques in order to achieve an
acceptable result.

(b) We illustrate that via a nuclear whole body scan
which is noisy and low-contrast. Our objectives is to
sharpen it and to bring out more skeletal details.
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4. Transform in image space

4.6 Anisotropic Diffusion Filter
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I ' Assumption and Goals

Assumption

An image is a piecewise constant function that has
been corrupted by zero-mean Gaussian noise with
small variance

Goals
Efficiently remove noise in homogeneous regions

Preserve object boundaries, discontinuities, and detailed
structures
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I ' Overview

RANSACTIONS 08 MEDICAL INAGIG, VIS 11, N0, 2. JUNE (753

Nonlinear Anisotropic Filtering of MRI Data

Guido Gerig, DIaf Kibler, Ron Kikinis, and Ferenc &, Jolesz

« To perform edge preserving smoothing iteratively
e To preverse edges

¢ Firstintroduced by Perona & Malik (1990)

« Later used to enhance medical images
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Isotropic diffusion

L(xy, It): V- (cVI(x,y, t))z c (Im +Iyy)
time or iteratio

diffusion coefficient

« Blurring the original image by a Gaussian

« The Gaussian blurring is spatial invariant, i.e., it
doesn’t respect the natural boundaries of
objects
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Anisotropic diffusion

o functi
I T(x, ¥, t)zV- (c/(x, ¥, t)VI(x, y, t))

iteration diffusion (edge-stopping) function
» To encourage smoothing within a region while inhibiting
smoothing cross regions (or piecewise smoothing)
¢ Function c depends on edge information

* c(x,y,t) can be defined as monotonically decreasing
function of the imana arad mananitiida:

o y.1)=g(VI(x.y.1))
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Diffusion function c(x,y)
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Fig. 1. {a) Diffusion functions (diffusion strength « versus gradient ©1).

(b) Flow functions (flow ®{V'J) versus gradient ¥ 1). T/ is given in scales
of the parameter A,
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Diffusion constant K

+ Max flow occurs when [Vl ~K
» To reduce noise in an image, choose K corresponding
to the grad magnitude produced by noise

* To enhance edges, choose K slightly < the grad
magnitude of the edges

» Since most medical images contain a significant
amount of low-contrast edges, we choose K based on
noise estimate

— Canny (1986) proposed to estimate K by the 90% value
of integral of histogram of abs(grad)
— Fix windowing technique: The window with min SD of all

the regions can be used to estimate noise. 1.5 * SD <K <
Fields, 08, HH/\VQ.O * SD
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Experiments: 1D (remove noise)
:PW LILKEE !«M u _/"’j
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Experiments: 3D (track braln edges)
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