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General Questions Concerned

 Are the images good enough to make
diagnosis?

If not, how can we improve image quality?
What information can we draw from images?
Can the information aid disease diagnosis?
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Outlines

® Image Quality

® Gray value transforms

® Histogram processing

® Transforms in image space

® Transforms in Fourier space

® Transforms in Time-frequency space
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Standard pipeline for medical image processing

Filtering
Registration
Correction
Segmentation
Analysis

Visualization

Validation
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1. Digital Image Quality
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Image Quality

IMAGE QUALITY CHARACTERISTICS
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I ' Contrast Sensitivity
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I l Contrast Sensitivity
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I ' Image Blurring
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I ' Image Blurring
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I ' Image Blurring
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I ' Images with different noise levels
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I ' Effects of noise
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I ' Effects of Noise and Blur

EFFECT OF NOISE and BLUR
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2. Gray Value Transforms
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Histogram

Histogram shows the distribution of image intensity, often
displayed as a bar graph.

The histogram of a digital image with gray levels in the
range [0, L-1] is defined as

h(ge)=n
where

g,: the kth gray level, g, €[0, L-1]

n,: the number of pixels having gray levels g,
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Normalized Histogram

Normalized histogram estimates the probability distribution
of occurrence of gray levels

Normalized histogram of a digital image with gray levels in the
range [0, L-1] is defined as

p(gk):r%

where
g,: the kth gray level, g, €[0, L-1]
n,: the number of pixels having gray levels g,
n : the total number of pixels in the image
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Histogram Processing
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.._._.a.._. T ——

Dasic imuge 1ypes: dark,

Dark: focuses on low values of the
gray scales
Bright: biased towards the high side
of the gray scales

Low contrast: has a narrow histogram
High contrast: covers a broad range
of the gray scales
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' Gray Value Transformations

Aqgray level transformation of a digital image with gray
levels in the range [0, L-1] is defined as

s=T(r)
where

r: the original/input gray levels

s: the transformed/output gray levels

T: gray level transformation
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Gray Value Transformations
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Image Negatives: s = L-1-r
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Gray Value Transformations
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' Log Transformations:

s =clog(1+r) (r=0)
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Power-Law Transformations

I ' Power-Law Transformations:
s=crY
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Power-Law Transformations:
s=crY
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Contrast stretching transforms
YORK

Contrast stretching transforms
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s =T(r) ab

FIGURE 3.4

{a) Contrast-
stretching
transformation.
(b} Thresholding
transformation.
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Slicing transforms

ab L=1
FIGURE 3.1 (a) This
!
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Slicing transforms
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2. Histogram Processing
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Histogram Equalization

s:T(r):(L-l)jo' P, (@)dw
The probability density function of the output levels s is
uniform.
For digital images, the equalization transform becomes
k k r.
se=T(r)=(L-1)% pr(rj):ZHj
j=1 j=1

where n is the total number of the pixels in the image.
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Histogram Equalization

ab

FIGURE 3.18 (a) An arbitrary PDF. (b) Result of
Eq. (3.3-4) to all imensity levels, r. The resulting in
independently of the form of the PDF of the r's

ng the transformation in
es, 5, have a uniform PDEF,
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I ' Example: 3-bit image

[ ny, Py = ng/ MN TABLE 3.1

Intensity
=20 790 0.19 distribution and
n=1 1023 0.25 histogram values
=2 850 0.21 for a 3-bit,
73 656 0.16 64 % 64 digital
=4 329 0.08 image.
rs =35 245 (.06
5= 6 122 0.03
=7 81 0.02
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Example: 3-bit image

abe
FIGURE 3.19 [lustration of histogram equalization of a 3-bit (8 inlensity levels) image
histogram, (b} Transformation function. (¢) Equalized histogram.
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{a) Original
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Example: Pollen
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Example: Pollen
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Example: Mars_Moon
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Histogram Matching

s :T(r):(L—l)J'0 P (v)dw
results in intensity levels s that is uniform distributed.
Suppose we define a variable z such that

H(z2)=(L-1)] p,(@)do=s,
where intensity level z has the specific density p, (z).
Then we have

z=H™(s)=H?[T(r)].
That is, we transform intensity levels r with density
function p, (r) to intensity levels z with specific density

rields. 0s. 1zt fuNction P, (Z)
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Histogram Matching

FIGIE 335
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3. Application:
MR Intensity Calibrations
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MR Image Intensity Calibration

FIG. 5. Original slices from three studies acquired as per the same
FSE Pd protocol before standardization displayed at a fixed window
that was actually set up for the first image (first row)
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MR intensity variation

* MR signal intensity doesn’t have a fixed
unit of measure

« Although the relative difference between
tissue types will remain roughly constant
from scan to scan, the absolute value of
the scale is not fixed

« May pose a problem in image
segmentation or quantification
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u Overview
Task

» For the same tissues in all-same-settings, the
resulting image intensities should be same or close

« For the same tissues in similar settings, the
resulting image intensities should be similar

Methods
» Scaling or windowing (quick, intra-patients)
« Transforming to a “standard” histogram (inter-
patients, various setting)
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Method 1: Scaling or windowing

f . mear(ILCSF)
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¢ Quick
» Can achieve display uniformity

« May not be fine enough for quantitative image
analysis across different imaging protocols

YORK
Method 2: transformation

Model

Bimodal histogram
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Method 2: transformation
Piecewise linear mapping
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FIG. 2. The ntenshty magping function fo the ranslosmallon phase.
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Example: histogram standardization
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Eg: for different patients

FIG. 5. Original slices from three studies acquired as per the same
FSE Pd protocol before standardization displayed at a fixed window
that was actually set up for the first image (first row), and after
standardization displayed at a fixed “standard” window (second row).

Eg: For an non-brain region

FIG. 7. Original slices of three fool studies before (first 1ow), and
after standardizafion (second row). The imaging protocol for all three
datasets was a Ty-weighted gradient-echo sequence with identical
parameters.
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Eg3: From different scanners

FIG. 9. Three SE Pd studies acquired as per the same protocol
before standardization at default windows (first row), and after
standardization displayed at a standard window (second row). The
training data were acquired as per a similar protocol (with slightly
different parameters) from a scanner of the same brand al a different
hospital
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Remarks

» The transform chosen for standardization has
to be 1-to-1 and monotonically increasing

» The intensity calibration for patients is better
done in disease-removed images or in an
non-disease homogenous region.
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