
The  Quantum Torus  Cq   : Let q =(qij) be a  r×r matrix of non-zero complex 

numbers  satisfying  the relation  : qii = 1, qij= qji , for all 1≤i,j≤ r.

Let Jq be the ideal of the non-commutative  Laurent polynomial ring

S[r]=C[t1 ... tr]n.c generated by the elements, titj-qijtjti, 1≤i,j≤r. 

The algebra  Cq:= S[r]/Jq is called the quantum torus of rank  r associated to q. 

Cq is said to be cyclotomic if  qij is a complex roots of unity for all  i.j.

The Lie tori sll+1(Cq)  : Given  Ml+1(Cq) = Ml+1(C)  Cq, the Lie algebra  sll+1(Cq) 

is  defined  as  :     sll+1(Cq)  = { X=( x ij) є Ml+1(Cq) :Trace(X) є[Cq , Cq]}

with  commutator relations:
[xa, y  b] = B(x, y)I([a, b]) + [x, y]  (a ○ b)/2 + (x ○ y)  [a, b]/2    [b1]

[I([a, b]), I([c, d])] = I([[a, b], [c, d]]),                        [b2]

[I([a, b]), x  c] = x  [[a, b], c ],                            [b3]

where      x, y є sll+1(C),      a, b, c, d є Cq ,

[x, y] = xy − yx,      x ○ y = xy + yx − 2/(l + 1)Tr(xy)I(1),

[a, b] = ab − ba,  a ○ b = ab + ba,  and  B(x, y) = 1/(l + 1)Tr(xy).

Let Q+ = positive integer root lattice of sll+1(C) ;    Q- = - Q+ ,   and   Q = Q+  + Q-

sll+1(Cq) has  a decomposition given by:                                                                    

sll+1(Cq) = (      sll+1(Cq)a )  (  sll+1(Cq)0 )

!!he IdeaT
Let V be a finite-dimensional  irreducible  representation of  sll+1(Cq) generated by  a vector  v.  Then 

there exists  a positive  Borel subalgebra b(sq) = ( nq
+

 H(sq) )  of  sll+1(Cq) such that         

Uq( nq
+  H(sq)). v  Cv .

It follows from the representation theory of multiloop Lie algebra that there exists a finitely supported 

functions  f : (C ×)r →  P+ such that  :

h  tm . v =  ∑    f(a)(h) eva (tm ) v, for all  m  G(sq), 

where  P+ is the  positive integral weight lattice  and  eva : sq → C denotes the evaluation  map at the point 

a(C×)r . This implies that  the  finite-dimensional irreducible sll+1(Cq) –modules are  tensor products of  

sll+1(Cq) -modules  which are analogous to the evaluation modules defined for the multiloop Lie algebras.

KNOWN  RESULT :  It has been shown in [1], [17] that a rank r cyclotomic torus Cq is 

isomorphic to a  tensor product:    Cq Q (d1) …..  Q (ds)  C[z1
1

... zk
1

],  

where Q (di) is a rank 2 quantum  torus associated to the matrix q(i)=(qkl[i]) 

with q12[i]=ζi= (q21[i])
-1
, where ζi is a di

th
root of unity for 1 ≤ i ≤ s.

Set     supp sll+1(Cq) = {(a, m)  Q×Zr : sll+1(Cq)a
m

≠ 0 } and  H(Cq) =   sll+1(Cq)0 .

:OUR OBSERVATIONS 

Let ß(q) := Set of maximal commutative subalgebras of  Cq and let Z(q) be  the center of Cq.

For sq є ß(q),  set G(sq) = { m =(m1,..,mr) є Zr :  tm1.. t
mr = tm є sq }  and

let  sq 
 ß(q)  be such that sq ∩ sq = Z(q).

•  One can associate with each  subalgebra sq
 ß(q), of  a normalized  cyclotomic

quantum torus  Cq, an abelian group G(sq )  = Zr / G(sq) of  rank  d1…. ds. 

•   Any Borel subalgebra of sll+1(Cq) is of the form ( nq
+  H(sq) ) or  (nq

-  H(sq) ), 

where nq is the subalgebra of sll+1(Cq) generated by the elements of  sll+1(Cq)a for

(a, m)  supp sll+1(Cq), with a  Q± and   H(sq) is the  subalgebra of sll+1(Cq)

generated by the elements of  sll+1(Cq)0 ,   for  m  G(sq).

• Let V be an irreducible sll+1(Cq)-module with finite dimensional weight spaces.   

Then there   exists   non-zero vector  v  V such that  Uq(nq
+)v =0 and

V = Uq(sll+1(Cq))v , where  Uq(a) denotes the universal enveloping  algebra of any  

) qC(1l+slnalogs of  Evaluation Modules for A
Suppose that ca  : (C

×)r →  P+ is a function supported at a point a(C×)r . Let v be a non-zero vector of  an 

irreducible  finite-dimensional sll+1(Cq) module V such that  :  

nq
+.v = 0   and   h  tm.v = ca(a)(h) eva (tm )  v. for all m  G(sq),  for some sq  ß(q).

H(Cq) is not a commutative algebra, hence  if  V  is a non-trivial sll+1(Cq)-module, then  

dim Uq(H(Cq) ) > 1,  implying,    h  ts.v  Cv for  s  Zr \ G(sq).

However nq
+.v = 0,  implies nq

+. h  ts.v = 0,  for all  s Zr .   In particular,  

h  ts.v is  a highest  weight  vector   of  V for  s  Zr \ G(sq).

Hence there exists a positive Borel subalgebra b(cq) with cq  ß(q) such that :                                           

b(cq). h  ts.v  C. h  ts.v ,     for  all s Zr \ G(sq). 

Irreducibility  of  the  module  V  and  the fact  that  the center of  the algebra  H(Cq) acts on  all 

the  highest  weight vectors by the same scalar,  imply that there exists  z  G(sq) such  that :

h  tm. h  ts.v = ca(a.zs)(h) eva.z
s (tm ) h  ts.v ,     for   s Zr \ G(sq) , m G(sq), 

where  ca(a. zs) = ca(a),  for  all  s Zr \ G(sq). Further owing to the bracket operation  [b1]  in H(Cq) , 

it is seen  that the module generated by v is an irreducible  sll+1(Cq)-module if and  only if 

ca(a) is a miniscule weight of sll+1(C) .

Let  F(sq) be the set of all finitely supported  functions   f : (C×)r → P+ such that f(a) is a miniscule         

weight for all a  support  of  f,  and  let  F(sq, Z(q)) be the subset  of   F(sq) consisting  of  all functions f      

such that 

eva(t
d)  ≠  evb(t

d),  for  a,b supp f and  td є Z(q),            

where d є Z
r

denotes a  multi-index element .

Given  ca є F(sq, Z(q))  and z є G(sq) , let  (sq, ca, z )   denote the set of all finitely supported functions 

g є F(sq, Z(q))  for which  supp g = zs  .a for s є G(sq).

Then the analogs of the evaluation modules for sll+1(Cq) is given by V (sq ,ca ,z) which is a  module          

generated by a highest weight vector v on which h sq acts by the function ca and h sq acts on 

any  other highest weight vector  of V (sq ,ca ,z)by a function of  the  form  zs.ca, for s є G(sq).

Given sq  ß(q) ,  f =∑
i=1

cai
 F(sq, Z(q)), z G(sq)

r ,  

set :       V (sq , f , z) =  V (sq ,ca ,z).

r

a є supp f  

r

:MAIN RESULTS

* Let V be a finite dimensional modules for the Lie algebra sll+1(Cq).   Then V

is of  the  form V(sq, f,z), where f  F(sq, Z(q)) and z G(sq)
| f |

,

*   Let sq , cq  ß(q)  and f1  F(sq, Z(q)), f2  F(cq, Z(q) ) with

|f j| = rj,  j=1,2 and  let  z  G(sq)
r
1 and h  G(cq)

r
2 . Then

there  exists  a  sll+1(Cq)-module isomorphism

g : V(sq, f1, z )→ V(cq, f2,h) if  and only if

subalgebra a of sll+1(Cq) .
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i. sq = cq.  
ii. For each highest weight  vector  v  V(sq, f1, z ), g (v)  is  a               

highest  weight  vector of  V(cq, f2, h) such  that  upto a scaling  

factor  f(1,v) (sq, f1, z )  is  G(sq) - equivariant to f(2,g (v))
 (cq. f2, h),    

where f(i,w)  denotes the  finitely supported function  by  which h sq acts on the         

highest  weight vector  w for some sq  ß(q) .
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• The multiloop Lie algebra sll+1(C) sq is a subalgebra of   sll+1(Cq) for all sq ß(q).

m

a є supp f 

×

where  |f| =  supp f.


