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Partial flag varieties

Let C be an l × l generalized Cartan matrix with columns indexed by a
set I. Let (H,Π,Π∨) be a minimal realization of C with H ∼= C2l−rank(C),
Π = {αi | i ∈ I} ⊂ H∗ (the fundamental roots) and Π∨ = {α∨i | i ∈ I} ⊂ H.
Then we say C = (C, I,H,Π,Π∨) is a root datum associated to C.

Given a root datum C as above, choose a subset J of the indexing set
I (i.e. a subset of nodes of the Dynkin diagram). Then we can naturally
form a sub-root datum C ′ = (C ′, J,H ′,Π′, (Π′)∨) whose Cartan matrix C ′ is
the submatrix of C defined by J . Set D = I \ J .

Associated to a pair C ′ ⊆ C are several algebraic and geometric objects:

• If G is a complex algebraic group associated to C, G has a (standard)
parabolic subgroup PJ with opposite unipotent radical, N−D .

• We can form G/PJ , the partial flag variety.
(The case A0 ⊆ C gives the complete (or full) flag variety G/B.)

• Via the Plücker embedding, we may form the corresponding ND-graded
multi-homogeneous coordinate algebras C[N−D ] and C[G/PJ ].

• The coordinate ring C[G] has a quantum analogue, Cq[G] (also de-
noted Oq(G)). From this we can define a quantization Cq[G/PJ ] and a
localisation of the latter whose degree 0 part is isomorphic to Cq[N

−
D ].

• G has a Lie algebra g with quantized enveloping algebra Uq(g) having

a subalgebra Uq(pJ )
def
= Uq(g

′)U+
q (g) analogous to PJ (g′ of type C ′).

• Dual to Cq[N
−
D ] is a braided Hopf algebra Uq(n

−
D) ∼= Uq(g)/Uq(pJ ) ([1]).
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Cluster algebras and their quantum analogues

Cluster algebras

Cluster algebras were introduced by Fomin and Zelevinsky ([2]) in 2001,
providing a framework for combinatorics associated to canonical bases of
quantum groups and total positivity for semisimple algebraic groups. One
way of thinking of what it means for a (necessarily) commutative algebra
to possess a cluster algebra structure is that it has a particular form of
presentation, with many generators but relatively simple relations.

Much work has been done in recent years on

classification: via Cartan matrices (hence rank, finite/infinite types. . .)

combinatorics: e.g. reformulations via quivers, geometric realisations

categorification: “cluster categories” of modules whose tilting theory
encodes the cluster combinatorics

Examples include polynomial algebras (rank 0) and coordinate algebras,
e.g. C[SL2] (of cluster algebra type A1) and C[SL4/N ], N upper unitrian-
gular matrices (of cluster algebra type A3).

We will focus on the so-called geometric type and describe in detail
only the “no coefficients” case. We start with an initial seed consisting of
y, a tuple of generators (called a cluster) for the cluster algebra, and an
exchange matrix B. More seeds are obtained via mutation of the initial
seed. Matrix mutation µk is involutive and given by the rule

(µk(B))ij =

{
−bij if i = k or j = k

bij +
|bik|bkj+bik|bkj |

2 otherwise

If (y = (y1, . . . , yd), B) is the initial seed then the mutated seed in direction
k is given by (µk(y) = (y1, . . . , y

∗
k, . . . , yd), µk(B)), where the new generator

y∗k is determined by the exchange relation

yky
∗
k =

∏
bik>0

ybik

i +
∏
bik<0

y−bik

i

The “with coefficients” version includes additional generators present in
every cluster that are never mutated but monomials in them also appear
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as coefficients in the exchange relations. The generators that are not coef-
ficients will be called “mutable”. We will indicate the mutable variables by
boldface type.

An equivalent approach takes the quiver Γ(B) defined by B, with arrows
arising from non-zero matrix entries, and gives a more easily applied picto-
rial rule for mutation. Coefficients give rise to “frozen” vertices (boxed in
the diagrams).

Cluster algebras associated to partial flag varieties

Work of Geiß, Leclerc and Schröer ([3]) has identified cluster algebra struc-
tures on C[G/PJ ] and C[N−D ] associated to C ′ ⊆ C as above. Their approach
produces the cluster algebra structure from a categorification, specifically
from a subcategory of Λ(C)-mod, the category of modules of the prepro-
jective algebra of type C. The complete rigid modules in this subcategory
correspond to the clusters of C[N−D ] and mutation arises from certain short
exact sequences.

Geiß, Leclerc and Schröer have also shown that monomials in the vari-
ables appearing in a single cluster are elements of the dual semicanonical
basis of C[N−∅ ]. It is conjectured that these monomials lie in the dual
canonical basis.

Quantum cluster algebras

Berenstein and Zelevinsky ([4]) have given a definition of a quantum cluster
algebra. These algebras are now non-commutative but not so far from being
commutative. Each quantum seed includes an additional piece of data, a
skew-symmetric matrix L describing quasi-commutation relations between
the variables in the cluster. (Quasi-commuting means ab = qLabba, also
written [a, b]qLab = 0.)

There is also a mutation rule for these quasi-commutation matrices and a
modified exchange relation that involves further coefficients that are powers
of q derived from B and L. The natural requirement that all mutated
clusters also quasi-commute leads to a compatibility condition between B
and L, namely that BTL consists of two blocks, one diagonal with positive
integer diagonal entries and one zero.
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Importantly, Berenstein and Zelevinsky show that the exchange graph
(whose vertices are the clusters and edges are mutations) remains un-
changed in the quantum setting. That is, the matrix L does not influence
the exchange graph. It follows that quantum cluster algebras are classified
by Dynkin types in exactly the same way as the classical cluster algebras.

Previously-studied examples of quantum cluster algebras include quan-
tum symmetric algebras (of rank 0) and quantum double Bruhat cells (given
in [4]). We now give the example of Cq[SL2] to illustrate the above defini-
tions.

Example. Let A = C[b, c] and set

Aq(a, d) = A<a, d>/<[ a, b ]q, [ a, c ]q, [ d, b ]q−1, [ d, c ]q−1>

and
Cq[SL2] = Aq(a, b)/<ad = 1 + qbc, da = 1 + q−1bc>.

This is a quantum cluster algebra of type A1 with initial seed ((a, b, c), B, L)
where

B =

 0
−1
−1

 Γ(B) =

1 //

��

2

3

L =

 0 1 1
−1 0 0
−1 0 0

 Γ(L) =

1 //

��

2

3

Then BTL =
(
2 0 0

)
. The two clusters are (a, b, c) and (d, b, c). Setting

X1 = a, X2 = b and X3 = c, the first quantum exchange relation is
calculated as

X ′1 = q0X−1
1 + q

1
2 (−l21−l31+l32)X−1

1 X2X3

= a−1 + qa−1bc.

That is, X ′1 = d and ad = 1 + qbc.
Note that forgetting about L and setting q = 1 we recover C[SL2] as

A1(a,d)/<ad = 1 + bc> with its usual cluster algebra structure.
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Examples of quantum cluster algebras

Example: complex projective space

The partial flag variety obtained from G = G(An) = SLn+1(C), J = I \{n}
is G/PJ = CPn, complex projective space. The corresponding quantized
coordinate ring Cq[CPn] is Sq(Cn+1), a quantum symmetric algebra, thus
of rank 0 as a quantum cluster algebra.

The unipotent radical N−{n} is Cn, i.e. affine space of dimension n, and

its quantized coordinate ring Cq[Cn] is Sq(Cn), so is also a rank 0 quantum
cluster algebra. The dual to this, Uq(n

−
{n}), is again a quantum symmetric

algebra on n variables: the Lie algebra n−D is the n-dimensional natural sln-
module V with the zero Lie bracket, having universal enveloping algebra
U(n−D) ∼= S(V ).

Example: the Grassmannian Gr(2, 5)

The partial flag variety

The partial flag variety obtained from G = G(A4) = SL5(C), J = I \ {2}
is G/PJ = Gr(2, 5), the Grassmannian of planes in C5. Its quantized co-
ordinate ring Cq[Gr(2, 5)] is the subalgebra of the quantum matrix algebra
Cq[M(2, 5)] generated by the quantum Plücker coordinates, as follows.

The quantum matrix algebra Cq[M(2, 5)] is generated by the set
X = {xij | 1 ≤ i ≤ 2, i ≤ j ≤ 5} subject to the quantum 2 × 2 matrix
relations on each 2× 2 submatrix of(

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

)
,

where the quantum 2× 2 matrix relations on ( a b
c d ) are

ab = qba ac = qca bc = cb

bd = qdb cd = qdc ad− da = (q − q−1)bc.

Hence a presentation for Cq[M(2, 5)] is

Cq[M(2, 5)] = C<X> /

<[x1i, x1j ]q, [x2i, x2j ]q, [x1i, x2i ]q, [x2i, x1j ] ,

[x1i, x2j ] = (q − q−1)x1jx2i ∀ 1 ≤ i < j ≤ 5>
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The quantum Plücker coordinates that generate Cq[Gr(2, 5)] are the 2×2
quantum minors

Pq = {∆ij
q

def
= x1ix2j − qx1jx2i | 1 ≤ i < j ≤ 5}.

As described in [5] and [6], two quantum Plücker coordinates ∆ij
q and ∆kl

q

quasi-commute if and only if {i, j} and {k, l} are weakly separated. In
this particular case, this means that the corresponding diagonals of a pen-
tagon do not cross. The power of q appearing in the corresponding quasi-
commutation relation is also combinatorially determined.

We now give an initial quantum seed for a quantum cluster algebra
structure on Cq[Gr(2, 5)]. For the initial quantum cluster we choose

ỹ = (∆15
q ,∆

14
q ,∆

13
q ,∆

12
q ,∆

23
q ,∆

34
q ,∆

45
q ).

This is a set of quasi-commuting variables by the above criterion: the cor-
responding diagonals of the pentagon are seen to be the five edges (in
bijection with the coefficients) and two non-crossing diagonals, (1, 3) and
(1, 4). That is, this cluster corresponds to a triangulation of the pentagon,
as in the classical case (see e.g. [7]).

The corresponding quantum exchange matrix B̃ is equal to that for the
well-known cluster algebra structure on C[Gr(2, 5)] ([8]) and, along with its
quiver Γ(B̃), is

B̃ =



−1 0
0 −1
1 0
0 1
0 −1
−1 1
1 0


Γ(B̃) =

12 // 13 //

��

14 //

��

15

23

34

XX222222222222222

45

UU++++++++++++++++++++++

where the quiver vertex corresponding to ∆ij
q is labelled by ij. We see

that this quantum cluster algebra is of type A2, since the subquiver on the
vertices 13 and 14 is an orientation of the Dynkin diagram of this type.
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The quasi-commutation matrix L̃ and its quiver Γ(L̃) are

L̃ =



0 −1 −1 −1 0 0 1
1 0 −1 −1 0 1 1
1 1 0 −1 1 1 2
1 1 1 0 1 2 2
0 0 −1 −1 0 1 2
0 −1 −1 −2 −1 0 1
−1 −1 −2 −2 −2 −1 0


Γ(L̃) =

12
))//

%%

'/

$,

!!CCCCCCCC 13 // ))

��
88888888888888888888888888

88888888888888888888888888

��222222222222222

��

14 //

��++++++++++++++++++++++

��

15

��

23

$,

!!DDDDDDDD

34

!!CCCCCCCC

45

These are compatible: B̃T L̃ = 2I2 ⊕ 02,5, where In is the n × n identity
matrix and 0m,n is the m× n zero matrix.

From this data and using the quantum exchange rule, we can write
down the exchange relations and identify the remaining cluster variables.
We know from the general theory of type A2 cluster algebras that only three
more cluster variables need to be identified. These are obtained from the
mutations µ1, µ2 and µ1 ◦ µ2 and the three exchange relations determining
these are

µ1 : X1X
′
1 = q−1X2X4 + qX3X5 ⇒ X ′1 = ∆35

q

µ2 : X2X
′
2 = qX5X7 + qX1X6 ⇒ X ′2 = ∆24

q

µ1 ◦ µ2 : X1X
′′
1 = qX4X7 + qX ′2X3 ⇒ X ′′1 = ∆25

q .

Here, Xi is the ith entry of the initial seed ỹ and X ′1, X
′
2 and X ′′1 are the

mutated variables. We see that the exchange relations are quantum Plücker
relations. For example, the second of the equations above is

∆13
q ∆24

q = q∆34
q ∆12

q + q∆14
q ∆23

q .

We have also verified the remaining seven exchange relations, with the
assistance of the computer program Magma.

Thus the complete set of cluster variables is

{∆35
q ,∆

25
q ,∆

24
q ,∆

14
q ,∆

13
q } ∪ {∆15

q ,∆
12
q ,∆

23
q ,∆

34
q ,∆

45
q }

where we have ordered the mutable cluster variables so that they are in
bijection with the almost positive roots of the root system of type A2 in
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Figure 1: Exchange graph for cluster algebra structure on C[Gr(2, 5)] and its quantum
analogue.

the order (α1, α1 + α2, α2,−α1,−α2). We see that this set is equal to Pq,
the set of quantum Plücker coordinates which generates Cq[Gr(2, 5)]. Hence
Cq[Gr(2, 5)] is a quantum cluster algebra.

We reproduce in Figure 1 the diagram in [9] showing the exchange graph
in this case, with clusters identified with triangulations of the pentagon in
the manner described previously. The top vertex corresponds to the initial
cluster described here.

The unipotent radical

The unipotent radical N−{2} associated to the above data is an affine space

of dimension 6. Its quantized coordinate ring is identified with Cq[M(2, 3)]
which embeds into Cq[Gr(2, 5)] via the map

A 7→
(

0 1
−1 0

)
⊕ A.

The quantum cluster algebra structure on Cq[N
−
{2}] may be obtained from

that on Cq[Gr(2, 5)] by noting that as a consequence of this map, Cq[N
−
{2}]

is generated by the set of quantum minors Pq \ {∆12
q }. This reflects the

construction of Cq[N
−
{2}] as a localisation of Cq[Gr(2, 5)] at (∆12

q ).
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Thus an initial quantum seed is given by

y = (∆15
q ,∆

14
q ,∆

13
q ,∆

23
q ,∆

34
q ,∆

45
q )

B =



−1 0
0 −1
1 0
0 −1
−1 1
1 0

 Γ(B) =

13 //

��

14 //

��

15

23

34

XX222222222222222

45

UU++++++++++++++++++++++

L =



0 −1 −1 0 −1 0
1 0 −1 0 0 0
1 1 0 1 0 1
0 0 −1 0 0 1
1 0 0 0 0 1
0 0 −1 −1 −1 0

 Γ(L) =

13 //
))

��888888888888888888888888888
//

��

14 // 15

23

((

34

!!CCCCCCCC

FF
















45

Notice that although B is given simply by deleting the row of B̃ labelled by
12, the matrix L is not related to L̃ in this way since the quasi-commutation
relations are different in the localisation.

The quantum cluster algebra structure on Uq(n
−
{2}), a subalgebra of

Uq(sl5), corresponds to that on Cq[N
−
{2}] via the bijection ∆ij

q 7→ q(Dij
q−1),

where Dij
q−1 is a q−1-minor of the matrix(

0 1 g12 g13 g14

−1 0 g22 g23 g24

)
and

g12 = F2K2 g22 = [F1, F2 ]qK1K2

g13 = [F3, F2 ]qK2K3 g23 = [F3, [F1, F2 ]q ]qK1K2K3

g14 = [F4, [F3, F2 ]q ]qK2K3K4 g24 = [F4, [F3, [F1, F2 ]q ]q ]qK1K2K3K4

(Fi, Ki being the usual Uq(sl5)-generators).
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The mutable quantum cluster variables are{
q(D35

q−1), q(D25
q−1), q(D24

q−1), q(D14
q−1), q(D13

q−1)
}

=
{
q(D35

q−1), qg24, qg23, g13, g12
}

and the coefficients are{
q(D15

q−1), q(D23
q−1), q(D34

q−1), q(D45
q−1)
}

=
{
g14, qg22, q(D

34
q−1), q(D45

q−1)
}

Again the mutable cluster variables are in bijection with the almost-positive
roots of A2, in the same order as before. One can show that the gij generate
Uq(n

−
{2}) and hence this algebra is also a quantum cluster algebra.

Example: the Grassmannians Gr(2, n) and their Schubert cells

With Stéphane Launois we have extended the above to the quantized coor-
dinate rings Cq[Gr(2, n)] for n ≥ 3, showing that they are quantum cluster
algebras of type An−3. From this, we have also obtained quantum cluster
algebra structures on the quantum Schubert cells of these Grassmanni-
ans. The quantum Schubert cell associated to the partition (t, s) (t ≥ s,
t+ s ≤ 2n− 2) is of quantum cluster algebra type As−1, independent of t.

It is expected that the quantum Grassmannians Cq[Gr(k, n)] are quan-
tum cluster algebras for any k and n but even classically the only finite-type
cases are n = 2 and (3, 6), (3, 7) and (3, 8) (considering only k ≤ n/2) and
so it is likely that some geometric arguments will be required.

Example: a corank 2 example in type A4

We have also explicitly calculated a quantum cluster algebra structure on
Uq(n

−
{1,2}) ⊆ Uq(sl5). This example is of cluster algebra type A3; the quiver

describing the exchange matrix in both the classical and quantum cases is

13 //

��

14 //

��

15

��

23

34

XX222222222222222

45

UU,,,,,,,,,,,,,,,,,,,,,,,

56

TT((((((((((((((((((((((((((((((
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Questions and a conjecture

The examples we have given are clearly closely related. We ask a question
generalizing Gautam’s Question (B) in [10]:

Question 1. Is there a method for obtaining (quantum) cluster algebra
structures on (quantizations of) C[N−D ] and C[G/PJ ] from (quantum) clus-
ter algebra structures on C[N−I ] and C[G/B]?

Gautam proposed that one should carry out “elementary operations” such
as mutation and freezing of vertices and demonstrated a positive answer
in type G2. We concur that a general construction of this type would be
desirable and remark that we have seen traces of such a phenomenon in the
case of quantum Schubert cells.

The exchange matrices B and compatible quasi-commutation matrices
L appearing in all our examples have the property that the diagonal block
appearing in BTL is precisely 2Im for some m.

Question 2. What is the significance of this? Is it encoding some Lie-
theoretic phenomenon?

More precisely, in the double Bruhat cell case the quasi-commutation
matrix encodes a Poisson structure. Poisson structures on Lie groups are
in precise correspondence with Lie coalgebra structures on the associated
Lie algebra: Poisson-Lie groups correspond to Lie bialgebras. We note that
the classical analogues n−D of the braided enveloping algebras Uq(n

−
D) are

braided-Lie bialgebras ([11]) and expect that the braided-Lie cobrackets on
n−D should be reflected in the structure of Uq(n

−
D).

Question 3. Do the quasi-commutation matrices in our examples relate to
Poisson structures?

Finally, there is a natural conjecture to make:

Conjecture. For any sub-root datum C ′ ⊆ C of a finite-type root datum
C, the quantized coordinate ring of the unipotent radical Cq[N

−
D ] admits

a quantum cluster algebra structure, quantizing that of Geiß, Leclerc and
Schröer on C[N−D ]. Furthermore, this quantum cluster algebra structure
lifts to one on the quantum partial flag variety Cq[G/PJ ] and induces one
on the dual Uq(n

−
D).

Note that even classically the equality of the algebra generated by the
cluster variables with the coordinate algebra is still conjectural for some
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cases, although it is expected to hold in general. The above conjecture
should certainly be true when the cluster algebra structure on C[N−D ] is of
finite type.

We would also like an associated categorification, perhaps coming from
either Λ(C)-mod (Λ the preprojective algebra) with some extra structure
or from deformed preprojective algebras. One could then hope for new
information about canonical bases, just as Geiß, Leclerc and Schröer have
related their cluster algebra structures to the (dual) semicanonical basis.
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