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Algebraic Integrability
Let ZDi

= ZLi
(ui) be the centralizer ofui

in Li.

DefineZD = ZD1 × · · · × ZDn−1.

Key Theorem: [CE]

1.There exists a Lie algebrâa of Hamil-
tonian vector fields oṅgD of dimension
n(n−1)

2 , which integrates to a free, alge-
braic action ofZD on ĝD. TheZD-action
lifts theA-action onXD to ĝD.

2.The action ofZD preserves the fibres
κ−1(z1, . . . , zn). If ji = |σi(zi)∩σi+1(zi+1)|,
then there are2

∑n−1
i=1 ji ZD-orbits

in κ−1(z1, . . . , zn).

In the case where eachDi consists of reg-
ular semisimple elements, this results gen-
eralizes results in [KW2].

Covering Space
Let zD := z1,gen ⊕ · · · ⊕ zn,gen.

Define: ĝD ⊂ XD × zD,

ĝD = {(x, (z1, . . . , zn)) : xi ∈ Gi · (zi + ui)}.

Have projections

µ : ĝD → XD, κ : ĝD → zD.

Proposition: [CE]

1. ĝD is smooth andµ : ĝD → XD is an
étale covering.

2.Moreover,ĝD is a subvariety of a Pois-
son varietyġD.

Decomposition Classes
and theA-action

Let li ⊂ gi be a Levi subalgebra, letzi be
the centre ofli, and letui ∈ li be principal
nilpotent.

Denote byzi,gen = {z ∈ zi : zgi
(z) = li}.

Definition: The variety

Di = Gi · (zi,gen + ui) ⊂ gi

is called aregular decomposition class.

Let Di ⊂ gi be a regular decomposition
class,1 ≤ i ≤ n − 1.

Define:

XD :=

{x : x is strongly regular, xi ∈ Di for all i},

Fact: XD is A-invariant.

Goal: To realize the action ofA as the
action of an algebraic group on a covering
space ofXD.

II: Algebraic Integrability
of Gelfand-Zeitlin Fields

Results onA-Orbit
Structure

Key Theorem: [Col1]

1.Let c ∈ C
n(n+1)

2 be such that forx ∈

Φ−1(c), |σi(xi) ∩ σi+1(xi+1)| = ji for 1 ≤

i ≤ n−1. Then there are2
∑n−1

i=1 ji strongly
regularA-orbits inΦ−1(c).

2.Let x ∈ Φ−1(c) be strongly regular and
let Zi denote the centralizer of the Jor-
dan form ofxi in Gi.
ThenZ1 × · · · ×Zn−1 acts freely and al-
gebraically on the variety of strongly
regular elementsΦ−1(c) and its orbits
coincide with theA-orbits in (1).

Remark: A similar result was reached by
Bielawski and Pidstrygach in [BP].

In [Col2] we prove an analogous result
for elementsx ∈ so(n, C) wherexi is reg-
ular semisimple andji = 0 for all i.

Strongly Regular
Elements

Definition: x ∈ g is calledstrongly regu-
lar if

dim(A · x) =
n(n − 1)

2
.

If x ∈ gsreg, then A · x ⊂ G · x is La-
grangian.

Goal: Describe all strongly regularA-orbits.

Strategy: Study the Kostant-Wallach map
Φ : g → C

n(n+1)
2 ,

Φ(x) = (p1,1(x), . . . , pi,j(x), . . . , pn,n(x)),

wherepi,j is the coefficient oftj−1 in the
characteristic polynomial ofxi.

Notation: Let σi(xi) be the collection of
eigenvalues ofxi ∈ gi counted with mul-
tiplicity.

Observe:Φ(x) = Φ(y) if and only ifσi(xi) =

σi(yi) for all i.

Gelfand-Zeitlin Actions
Let ξfi,j be the Hamiltonian vector field of
fi,j ∈ JGZ.

Let

a = span{ξfi,j
: 1 ≤ i ≤ n − 1, 1 ≤ j ≤ i}.

Kostant and Wallach prove:

Key Theorem: [KW1]

The Lie algebraa is a commutative Lie
algebra of dimensionn(n−1)

2 and integrates

to a global action ofC
n(n−1)

2 on g.

This action ofC
n(n−1)

2 on g is sometimes
referred to as the Gelfand-Zeitlin action.

Notation:

Following [KW1], we defineA := C
n(n−1)

2 .

In [Col2] we prove analogous results for
so(n, C).

Facts:[KW1]

• J(g) ⊂ C[g] is Poisson commutative.

• The restriction ofJGZ to a regular ad-
joint orbit is an integrable system.

Fact: An analogous Gelfand-Zeitlin inte-
grable system exists for complex orthog-
onal Lie algebrasso(n, C) (see [Col2]).

Gelfand-Zeitlin
Integrable System

Notation: For x ∈ g, let xi ∈ gi be the
i × i upper left-hand corner ofx.

C[gi]
Gi = C[fi,1, . . . , fi,i], wherefi,j(x) =

tr(xj
i ).

Define: JGZ ⊂ J(g),

JGZ = {fi,j : 1 ≤ i ≤ n − 1, 1 ≤ j ≤ i}.

Observe:

|JGZ| =

n−1
∑

i=1

i =
n(n − 1)

2
=

dim(g) − rank(g)

2
,

is half the dimension of regularG · x.

Gelfand-Zeitlin Algebra
Letg = gl(n, C) with the Lie-Poisson struc-
ture. We use a Poisson analogue of the
Gelfand-Zeitlin algebra to construct an in-
tegrable system on a regular adjoint orbit
in g.

Let gi = gl(i, C), Gi = GL(i, C).

gi is a subalgebra ofg by embedding

Y →֒

[

Y 0

0 0

]

.

Similarly, Gi →֒ G.

Poisson analogue of Gelfand-Zeitlin sub-
algebra:

J(g) = C[g1]
G1 ⊗C · · · ⊗C C[g]G.

Lie-Poisson Structure
Definition:

A smooth variety(X, {·, ·}) is a Poisson
variety if {·, ·} makes the sheaf of func-
tionsOX onX into a sheaf of Poisson al-
gebras.

If g is a reductive finite dimensional Lie
algebra, theng ∼= g∗ is a Poisson variety
with the Lie-Poisson structure.

A function f ∈ Og defines a Hamiltonian
vector fieldξf(g) = {f, g}.

Let G be the adjoint group ofg.

Fact: The symplectic leaves of the Lie-
Poisson structure are the adjoint orbitsG ·

x.

i.e. G · x is symplectic and its tangent
space is spanned by Hamiltonian vector
fields.

I: Orbit Structure of
Gelfand-Zeitlin Action

Introduction
Setting:

•Kostant and Wallach [KW1] construct
an integrable system ongl(n, C) using
Gelfand-Zeitlin theory.

•Corresponding Hamiltonian vector fields
are complete and integrate to an action
of C

n(n−1)/2 ongl(n, C). Refer to this ac-
tion as Gelfand-Zeitlin action.

•Orbits of Gelfand-Zeitlin action of di-
mensionn(n−1)

2
form leaves of polariza-

tion of open, dense subvariety of a reg-
ular adjoint orbit.

Sections:

1.Describe all orbits of dimensionn(n−1)
2

of the Gelfand-Zeitlin action.

2.Algebraically integrate Gelfand-Zeitlin
system on covering spaces of decom-
position classes.
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