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Diffusive-Convective Mass Transfer Rates for Solutes Present
on Both Sides of a Dialyzer Membrane

Jan P STERNBY,* ANDERS NILSSON,* AND Laurie }. Garrent

The transport (}) of waste products across dialyzer mem-
branes is known to be proportional to the blood inlet con-
centration (Cy,) according to )] = KC,,;, where K is the clear-
ance, For solutes present on both sides of the membrane, like
sodium chloride, it has been shown? that under certain con-
ditions the transport rate will depend linearly also upon the
dialysis fluid inlet concentration C;; according to ] = K,Cy,; —
K4Cyi. Ky, and K, are generalized clearances, which depend
upon flow rates and membrane permeability but are indepen-
dent of the concentrations. We have extended the results of
Ross et al. in three ways. First, they only considered ultrafil-
tration (UF) that is equally distributed along the dialyzer. This
is an unrealistic assumption, especially in hemodiafiltration
and hemofiltration treatments with large UF rates (Q,,) lead-
ing to large pressure drops along the dialyzer. Our approach
allows for an arbitrary UF distribution. Second, it was possi-
ble to incorporate the more realistic model of Villaroel et al,
for the local combination of diffusion and convection. Finally,
we allow an arbitrary distribution of blood among the differ-
ent fibers. All of these results are valid in both cocurrent and
countercurrent configurations. With a sieving coefficient of
1, a good approximation for small solutes, we were also able
to show that K, = K, — Q. irrespective of the UF distribu-
tion along the dialyzer. This is an important result that, for
example, provides a theoretical foundation for allowing a
nonzero Q. in conductivity based clearance measurements,
ASAIO journal 2005; 51:246-251.

E arly results on the diffusive-convective mass transfer rates in
dialyzers for solutes present on both sides of the membrane
were given by Ross et al.! In this article we have extended their
results in several important directions, including less restric-
tions on flow distributions, membrane permeability and siev-
ing properties, and with the more accurate treatment of the
combination of diffusion and convection according to Vil-
larcel et a2

For solutes that are not present in the fresh dialysis fluid, it is
well established that the mass transfer rate (J) across a dialyzer
membrane is proportional to the solute concentration C,; in
the blood entering the dialyzer so that | = KC,;. By imposing
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a number of restrictive conditions, a theoretical expression for
the proportionality constant, the clearance K, was derived
many years ago.3 These conditions include an equal distribu-
tion of the blood flow among the fibers in the dialyzer, an
instant and perfect mixing of the blood at each point in each of
the fibers, an instant and perfect mixing of the dialysis fluid at
each point along the dialyzer, and a constant mass transfer
coefficient along the dialyzer. The early results also assumed
the absence of ultrafiltration (UF) and a sieving coefficient (S)
of 1.

For the case of countercurrent blood and dialysate flows, the
clearance K depends upon the blood flow rate Q,, the dialysis
fluid flow rate Q, and the mass transfer area coefficient kA of
the dialyzer according to the well known formula3

Qe Qut(1=f)
K-—W thhf~e*°‘(?)7> D?i) (1)

This formula has often been used also with small but non-
zero UF rates, as dictated by the required weight loss of the
patient, thus neglecting the added clearance from convection.
The correct inclusion of the convective contribution is fairly
complicated. To simply add the ultrafiltration rate to the clear-
ance computed from pure diffusion from Equation 1 is incor-
rect because ultrafiliration affects both the flow rates and the
concentrations, so that the combination of diffusion and con-
vection results in less clearance than the sum of the two.
Because of the increasing popularity of hemodiafiltration
(HDF), higher UF rates must be taken into account to provide
more accurate clearances.

When including the effect of UF upon clearance, several
new assumptions must be made. It is, for example, common to
assume that the UF is evenly distributed along the dialyzer.
Without this assumption, the resulting formulas become much.
more complicated, but it would of course be more reahstlc 0 -

assume a decreasing UF rate along the dialyzer, andi insome . "
cases even a negative UF rate, that is, backfiltration, at the - -~
blood outlet end. A sieving coefficient of less than 1 will |~
decrease the effect of ultrafiltration for larger solutes, buttaking ' -

this into account will complicate the formulas cons:derabfy it

is also common in the derivation of formulas to just add the -~

diffusive and convective transports across the membrane. at.
each point along the dialyzer.4~8 As shown by Villaroel et af. 2
this is an overly simplified-summation because diffusion ‘and”

‘convection also interact inside the membrane The effect of
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this interaction upon clearance was included in the work by L

Waniewski et al.? also for transport backwards from dialysate o
to blood."o - ' « ‘
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For solutes that are present on both sides of the membrane,
like sodium chloride, the transport rate will under certain
conditions' depend linearly also on the concentration Cg; in
the fresh dialysis fluid according to } = K,Cp — KqCqi The
proportionality constants K, and K4 do not depend upon the
concentrations, but are, in the general case, complicated func-
tions of the blood and dialysis fluid flow rates, Q, and the
membrane properties. By setting C,; = 0, we see that K, equals
the classical clearance, K. In certain cases Ky = K, — Q,,, but
this is not true in general when the sieving coefficient is less
than 1.

In this article, the results of Ross et al.! have been extended
by eliminating several of the assumptions they made. The
linearity of the mass transport rate as a function of the con-
centrations as well as the relation between the proportionality
constants K, and K4 have thus been established under less
restrictive conditions. The initial derivation assumes a coun-
tercurrent configuration. The same results are then obtained for
the cocurrent case by minor changes in the derivation.

Materials and Methods

The transport rate } of solutes from blood to dialysis fluid
can, in the general case, be calculated as

J =G Coi — (Qp— QuiCss 2)

where Cy, is the solute concentration at the blood outlet. This
mass balance equation can be used to determine clearance
both experimentally and theoretically. it is important that con-
centrations and flows all refer to the same type of fluid, that is,
whole blood, plasma, or blood water, depending upon where
the solute is distributed. Laboratory values are usually given as
plasma concentrations and thus usually need to be converted.
This is particularly important when Q¢ is large, like in HDF. In
this article, the term “blood flow” is used to denote the relevant
flow on the blood side of the dialyzer.

For a theoretical calculation, the inlet concentration and the
flow rates are assumed to be known. The only unknown entity
in Equation 2 is then the solute concentration C,,. Under
certain conditions, this can be theoretically derived from a
system of differential equations describing the evolution of the
blood and dialysate concentrations and flow rates along the
dialyzer. The basic principles are discussed in the following
sections, and the full derivation is given in the Appendix.

The transport may be driven by both diffusion and convec-
tior. The size of a pure diffusive transport is proportional to the
concentration difference between blood and dialysis fluid, and
a pure convective transport would be proportional to the blood
concentration. It is common to assume that the total transport
across the membrane at each point along the dialyzer is simply
the sum of the pure diffusive and convective terms. However,
the two transport mechanisms will interact? so that the total
transport is less than the sum of the two applied separately.
The reason for this is that the ultrafiltrate flow will enter into
the membrane fluid with the same solute concentration as the
blood. This will decrease the concentration gradient within the

membrane and thus reduce the diffusive transport. The effect-

of this local combination of diffusion and convection is in-
cluded in the derivation in the Appendix and is an extension of
the results by Ross et al.t

It is assumed in the derivation that there is an immediate -

The C’ouutercurrent Case

mixing within both the blood flow and the dialysate flow at
each point along the dialyzer. This is unrealistic, and instead
concentration profiles will develop where the concentration
decreases gradually from the center of the fibers to the bulk of
the dialysis fluid. The diffusive transport is at each point driven
by the concentration gradient, and the assumption of immedi-
ate mixing then means that the total effect of the gradient is
summarized as a difference between the mean concentrations.

The effect of ultrafiltration upon the transport is twofold. It
contributes directly to the mass transport across the membrane
by convection, and it changes the flow rates in the blood and
the dialysate, which affects the size of the concentration
changes caused by the mass transport. These changes in the
flow rates complicate the theoretical derivation slightly, but as
shown in the Appendix, it is possible to get general results even
for an arbitrary distribution of the ultrafiltration within the
dialyzer. This is also an extension of the results by Ross et al.!

For theoretical clearance calculations, it is usually assumed
that the blood flow is equally distributed among the different
fibers of the dialyzer. This is, however, an unrealistic assump-
tion. Because of the production process, there will inevitably
be variations in inner diameter among the fibers. Because the
flow resistance is inversely proportional to the fourth power of
the diameter, even small diameter variations will produce
fairly large flow variations. In addition, the fiber diameter may
be reduced by varying degrees of clotting. It is, therefore, of
interest to get results also for the case of different flow rates
through different fibers. The flow rate in the fiber affects the
concentration of solute along the fiber, and it is thus necessary
to treat each fiber separately, which leads to a very large
system of equations, as shown in the Appendix. The dialysate
compartment, on the other hand, where there are no separat-
ing walls, is treated as one compartment with perfect mixing.
This arbitrary distribution of the blood flow amaong fibers is the
third extension of the results by Ross et al.?

The theoretical results were verified in an experimental
study?! where a 30 L tank of dialysate, representing a patient
on dialysis, was dialyzed for approximately 180 minutes
against a dialysis fluid of different conductivity. The “dialysis
session” was conducted in countercurrent conﬁguration with
biood and dialysate flow rates set at 300 and 500 ml/min,
respectively, and an ultrafiltration rate of 1.0 L/h. Six sessions
were performed: {set A) three with the initial “patient” (tank)
conductivity, C,,, set at 17.0 mS/cm and the dialysis fluid
conducthty, Cqir set at 13.0 mS/cm, and (set B) three with C,,,

= 13.0 and Cy = 17.0 mS/cm, thus obtaining diffusive and

convective mass transfer in the same (set' A).and in opposing. o

directions (set B). Flow through cells’ permxtted continuous .
conductivity measurement in the blood and d:alysxs fluid en-
tering and exiting the d;alyzer P1ots were made of J= Qu,,Cd‘
versus Cp,-Cyi. ,

Results

Based on the above assumpt:ons outlmed in the prevxous |
section, a model for all of the coricentrations aiong thedialyzer

s derived in the Appendix. It is shown that the concentrations A
‘are determined by a system of first order linear. differential -
‘equations with coemcrents that may vary thh the posstron in -
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Figure 1. Plot of J-Q;C; versus C,,;-C; for an experimental study
session where both diffusion and convection occurred in the same
direction (C_, = 17.0 and C4, = 13.0 mS/cm). The trendline repre-
sents equation 5 with k, = 217.7 mUmin.

the dialyzer. The solution to this systern of equations produces
an expression for the blood concentration at the dialyzer out-
let, from which the transport rate J of solute across the mem-
brane can be written as

J=Ky Coi — Ky Cyy 3)

This linear dependence of the transport rate upon the inlet
concentrations has been shown under widely varying general
conditions:

« Arbitrary distribution of the blood flow among different

fibers

Arbitrary distribution of the UF amang different fibers and

along the dialyzer length

« Inclusion of the interaction between diffusion and convec-
tion across the membrane?

» Arbitrary variation of the membrane permeability among

different fibers and along the dialyzer length

Arbitrary variation in the sieving properties among differ-

ent fibers and along the dialyzer length

*

Ld

The proportionality constants (which are independent of the
concentrations) are in the general case quite complicated func-
tions of the flow rates and the membrane permeability. For
solutes that are small enough to pass the membrane freely (so
that Staverman’s reflection coefficient o = 0), it is shown that

Ko = Kg= Quy {4)
We can then write
J = KplCoi — Cd + Que Cy (5)

This result was verified in the experimental study?! by plot-
ting J-Q.Cq; versus C-Cg;. Figure 1 represents one of the
sessions from set A where both diffusion and convection were
in the same direction, from the “blood” to the dialysis fluid. All
six plots of J-QufCdi versus Cbi-Cdi were shown to be perfectly
linear (R* > 0.999), thus validating Equation 5.

For special cases, it is possible to derive explicit formulas for
clearance. In addition to having o = 0, we may assume that all
fibers are the same so that they can be lumped together as one
fiber and that the membrane permeability k, and the ultrafiitra-
tion rate are constant along the dialyzer. The system of differential

equations in the Appendix then reduces to just one equation, the
matrix @ reduces to a scalar integrating factor, and Ky, 5%

CQy Q- — Q) (Qy+Qu
K= 0~ F (0= O ©
where
1
_ Qb‘Qm_Qd'*Qm’? . _ s
f—{ . a } with y=e®& -1 (7)

A slightly different formula results if the effects? of the local
combination of diffusion and convection are neglected and re-
placed by a direct sum of the two.5 The only difference is that y
in Equation 7 is replaced by y = Q_/k A. It should be noted that
both of these formulas are nonlinear in Q. It is also possible to
derive a clearance formula for the realistic case with a UF rate that
changes linearly along the dialyzer, but it has a more complicated
appearance and is therefore not presented here.

The Cocurrent Case

By changing the sign of the dialysate flow, it is shown at the
end of the Appendix that all of the basic results, Equations 3, 4,
and 5, are valid also in the cocurrent case. For special cases, it is
again also possible to derive explicit formulas for clearance. With
the same assumptions as for Equations 6 and 7, we get

Qo (Qy+ Qup— F Qu (Qp— Q)
Qs+ Qy

Kb = (8)

where

Qe
with y=e® -1 (9

e [Qb_ Quf. Qy ]%
Qs Qg+ Qy

Discussion

The result (Equation 3) that the mass transport rate is linear in
both inlet concentrations should be expected from the linear
nature of the driving forces for diffusion and convection. The
same result could, therefore, be expected to hold under even
more general conditions, such as without the assumption of
perfect mixing within the fibers and in the dialysate. The resulting
partial differential equations for the concentrations within the
fibers could probably be handled. The main difficulty lies in the
distribution of the fibers within the dialysate compartment, and
sorme regularity conditions on this distribution would probably be
needed to obtain any theoretical results.

Equation 5 is an important result that is needed, for exaniple,
in the derivation of the formulas for conductivity based clear-

ance measurements. Because Ky, is independent of the con-. "~

centrations, we can set Cy; = 0 to See that K, equals the normal

clearance. Setting Q. =
dialysance (by the denmuon of the. term) -in: this case, and: :

clearance and-dialysance are then ‘numerically - equal. for..:

nonzero Q K;, changes with Q,_,f, and d;alysance is not well
defined because it would not be mdependent of the concen-
trations. Thus, contrary to. common belief, a- conductlwty :
based clearance measurement that gives a value for K, should -

not be considered a dia!ysance measurement but. rather a

clearance measurement.

0, we see that K, also equals the IR
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Figure 2. A longitudinal view through a dialyzer with local frans-
ports of mass and water from blood in one fiber to dialysate.

The result of Equation 5 should be expected not to hold for
larger solutes with o > 0 because it requires that all compo-
nents of T in Equation A14 equal 0. This cannot happen if the
ultrafiltration is positive all along the dialyzer and would be a
rare event also in other cases.

The effects of protein in the blood deserve special attention.
Concentration polarization of protein that has been described
for high UF rates leads to changes in the membrane perme-
ability for solutes and fluid, which may vary among fibers and
with position in the dialyzer. The conditions outlined previ-
ously show that all such effects of protein layers on the mem-
brane are included in our derivation. The Donnan equilibri-
um?3-15 that, in the presence of protein, affects ionic
substances (such as sodium chloride) is more complex to
analyze. The result will depend upon the model used to de-
scribe the Donnan effects. The results described previously
will still hold if we assume that a fixed amount of the solute is
attached to the protein and that the blood concentration refers
only to the removable fraction of the solute.

Conclusion

The mass transport rate across a dialyzer membrane has
been shown to be linear in the inlet concentrations of both
blood and dialysis fluid under quite general conditions. Under
the same general conditions, but with complete convective
permeability (zero reflection coefficient), the difference be-
tween the proportionality constants has been shown to equal
the UF rate. These results form the basis for conductivity based
clearance measurements.

Appendix

Derivation of the Mass Transport Rate: The Countercurrent
Case

The basic principle is to calculate the theoretical mass trans-
fer rate by solving equations for the blood concentrations
along the dialyzer. The concentrations and flows are viewed as
functions of the distance x (x =< L) from the blood inlet along
the dialyzer. To minimize notation, the conventional Q,, and
Q are only used for the inlet flows, whereas the internal blood

and dialysate flows are denoted just B and D. Figure 2 is a
longitudinal view through a dialyzer with local transports of
mass and water from blood in one fiber to dialysate. The
following notations are used:

B.{x) = blood flow rate at distance x in fiber n

Qp = total blood flow rate at blood inlet

Dix) = dialysate flow rate at distance x

Qg = dialysate flow rate at dialysate inlet

Quo = dialysate flow rate at dialysate outlet

Q. = total UF rate

C.(x) = solute concentration at distance x in fiber n

C,; = inlet blood concentration

Cylx)

Cg = inlet dialysate concentration

= mean solute concentration in dialysate at distance x

Cg4, = outlet dialysate concentration

o.{x) = Staverman’s reflection coefficient at distance x in

fiber n
Pe (x) = Peclet number at distance x in fiber n

koan(x) = mass transfer area coefficient per unit length at
distance x in fiber n

k.(x) = mass transfer area coefficient with Villarcel
correction

For ease of notation, the argument (x) will be dropped
whenever clarity permits.

The decrease in solute mass flow rate in fiber n can be
written in two ways. On the one hand, it equals the derivative -
of the mass flow rate (left hand side of Equation A1). On the
other hand, it can be written as the interaction of diffusive and
convective transport across the membrane.2 Rearranging the
expression for this interaction,? we get the differential equation
(prime denotes derivative with respect to x}

(B,C)' = —k(C, = C) + B(1 —0)C,  (AD)
where?
Pen —B:')(l - Un)
kn = Koo o7 = e — (A2)

The last equality follows from the definition of the Pec!
number : '

—B,(1 —o,) o
Pe, = —> (A3) .
For continuity reasons, the change in sofute mass ﬂow rate"’z
in the dialysate must be : e

(Dcd)"=2(3;,C¢j' T

so that with an«a mdependent of x (but dependent upon tIOWS
and concentrations), we have : ;

' ’ DCd— 2 (3 Cn)+ a ‘k (AS) -

The physxcal meanmg of . is the net mass ﬂow of solute

' along the diaiyzer in‘the dxrectlon ot the dtaiysate ﬂow Thls’
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xmust be constant along the dialyzer, because no solute is
generated, and may be related to the net solute flow leaving
the dialyzer at the blood entrance.

a = QuCy — QuChn = QuCq — QuCyi +J  (A)

where | is the rate of solute mass transfer across the membrane.
Correspondingly, the changes in fluid flow rate and blood
flow rate are related

= > B, (A7)

<o that the difference between D and the sum of the B, is
constant along the dialyzer. This constant, 8, is the net volu-
metric flow in the dialysate flow direction and can be related
to the net flow leaving the dialyzer at the blood entrance,

B= Qo Qv=Qy— Qp+ Qu (A8)
To simplify notations we also introduce the constant § as
5= a « (A9)
B D-2 B,

The physical meaning of & is the mean concentration across
the dialyzer (blood and dialysate compartments together), and
it will be constant along the dialyzer because both numerator
and denominator are constant. This requires the denominator
to be nonzero. The case where the denominator of Equation
A9 equals 0, or equivalently Q4 = Q;, — Q,, can be handled
by a continuity argument in the final result. We can now insert
C4 from Equation A5 into Equation AT and subtract the con-
stant 8 from each occurrence of C,, to get

™

PSR LI AT
(- oy =[5 + g )G 0+

—-50',,-3—:

k,
BB, & BnlCn = 8) (A10)

The summation index m in the first term of the second line
covers all the fibers in the dialyzer. This term represents the
influence upon each fiber concentration from all of the other
fibers (via the dialysate). Introducing the vector C having all

(C, — 9 as its elements, Equation A10 can be written
C'=Fx-C+3-G(x) (A11)

where the elements of the matrix F and the vector G are
_— k, B\ Kk,
nn T Bn + o, Bn + D

k,
Fom = B, for n#m

DE. (A12)
G,= B
n= —Un—g;
The solution to Equation A11 can be written as's
Cix)=®(x)}-CO) + &-T(x) {A13)

where the vector I is defined by

- =0 we can wrrte

I'ixi= d’(x)‘f & (5YG(5)ds (A14)
G
and the matrix @(x) has the property
®'(x) =F(x)-P(x) (A15)

Returning now to the blood concentrations at the outlet (x =
1) we expand Equation A13 to write

Coll) = 8= 2, ®()(C,(0)

m

-8+ 8- T, (L) (Al6)

Both & and ' depend only upon the flow rates and the
material constants k, and ¢, and not upon the concentrations
and can, in principle (although it is difficult in the general
case), be calculated if the variations along the dialyzer are
known. Using Equation A5 at x = L, together with Equation
A16 and the fact that all the inlet blood concentrations are
equal, we can now calculate 5 [and thereby a as & = § Qg4 —

Qb Quf
Qs = 2 B L) 8+ 2, B(L) D, Bl NGy — 8) +

5 BALI(L) + a=8Q,— Q. + (Cy— 8¥ +

A +8(Qu— Qut Qu) (A17)
{n Equation A17 we have introduced ¥ and A as
¥ =2 BAL) Y Pomll)
! " (A18)

A= B LT

With a from Equation A8 and A9 the mass transfer rate J is
obtained from Equation A6 as

J= QG — Qi+ 8 Qu— Qo+ Qi (A19)
Inserting & from Equation A17 and rearranging we get
J = KolCoi — KsCy; {A20)
where
_QuQs+ A Qs+ Q)
& Q+A-¥
_ QuAQs— Qurt A — ‘1')
av Qs+ A= 'I’

To study the relationsth between Kb and a y e can an:;dyzéi
their dxfference ‘ »

A -t Quf)' '

(Azzi.”‘;f R

Ko=Ks= Qui- TQFA-Y
Unless Q= Qp, — Q¢ (which would be very. uncommon .

but can be handled by contmulty) we see. that if and only ;f A o

= Ks(Cb’,-—'Cd:)k:* Qutcdi (AZ?:) o
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Note that for Cy, = 0 the explicit dependence upon Q.
disappears from Equation A23. However, Q, still affects the
clearance K, (through ¥ in Equation A21). One way to have A
= 0 is that o, = 0 for all the fibers, that is, that the solute is
small enough for a free convective passage through the
membrane.

The Cocurrent Case

in this case, the dialysate flow is assumed to enter at the
same end as the blood flow, that is, at x = 0. Equations A1, A2,
and A3 for the blood concentrations will be unchanged, but
the sign of the dialysate flow D in the following equations will
change, as will the sign of a because it is interpreted as the
solute flow in the dialysate direction. The modified Equations
A5, A8, and A9 will read

DCy= -2, (B,C) + « (A5")

B=Qy+ Qs (A8")

oo (A9")
B D+ B,

n

The changed sign of D will also change the sign of all terms in
Equations A10 and A12 that contain D. The next difference is
in the boundary conditions leading to Equation A17. In the
cocurrent case we use Equations A5’, A8/, and A9" atx = O to
get the much simpler expression

(Qy+ Qo) = QulCy + Qs

With the same definitions of ¥ and A as before, the mass
transfer rate | will be the difference between inlet and outlet
mass flow rates (using Equation A16)

J= QG — 2 BCL) = QG — 2, ByfL) -6~

(A177)

S BLY @ (LN Coi— 8) = 8+ 2, BLALT (L) =

QuCoi~ 8(Qp— Qui) — (Cp; — ¥ — 8A (A19)

Inserting & from Equation A17’ and rearranging we again get
Equation A20 where
K = Qu(Qo = W) + QuQur— A)
i Qy+ Qy

(A21")
K = QAQp—Qu+A-Y)
a7 Qp+ Qg

To study the relationship between K, and K, we can analyze
their difference

Ko~ K= Qu— A (A22%)

We see that, if and only if A = 0, we again get Equation A23.
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