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Mammalian inflammatory signaling, for which NF-jB is a
principal transcription factor, is an exquisite example of
how cellular signaling pathways can be regulated to
produce different yet specific responses to different inflam-
matory insults. Mathematical models, tightly linked to
experiment, have been instrumental in unraveling the
forms of regulation in NF-jB signaling and their underlying
molecular mechanisms. Our initial model of the IjB–NF-jB
signaling module highlighted the role of negative feedback
in the control of NF-jB temporal dynamics and gene
expression. Subsequent studies sparked by this work
have helped to characterize additional feedback loops, the
input–output behavior of the module, crosstalk between
multiple NF-jB-activating pathways, and NF-jB oscilla-
tions. We anticipate that computational techniques will
enable further progress in the NF-jB field, and the signal
transduction field in general, and we discuss potential
upcoming developments.
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Introduction

The transcription factor NF-kB is a central inflammatory
mediator, as it is essential for the majority of gene induction
events in response to inflammatory cytokines as well as
pathogen-derived substances. In unstimulated cells, NF-kB is
bound to IkB proteins which hold it latent in the cytoplasm.
Cellular stimulation with inflammatory agents results in

IKK-mediated phosphorylation of IkB proteins, their ubiquiti-
nation, and proteasome-mediated proteolysis, allowing free
NF-kB to accumulate in the nucleus and bind the cognate kB
elements in target gene promoters (Box 1; reviewed in Hayden
and Ghosh, 2008). Regulation of NF-kB is important for the
physiology of inflammation and immune activation, and
misregulation of NF-kB activity has been identified as a major
culprit of chronic inflammatory diseases and cancer. As such
understanding NF-kB regulation has been a major focus of
biochemical, mouse genetic, and human disease studies
since its discovery more than 20 years ago (Sen and
Baltimore, 1986).

Major components of many signaling pathways that activate
NF-kB have been mapped, and this information is often
summarized in pathway diagrams (e.g. Box 1). However, the
dynamics of molecular level regulation are insufficiently
captured by the static representation inherent in such
diagrams. Mathematical models, on the other hand, can
quantitatively describe how changes in signaling occur in
space and time, enabling exploration of signaling pathways in
silico (Box 2). The resulting insights can provide a theoretical
framework and generate testable predictions for subsequent
experimental studies. Experimental results likewise inform the
development and refinement of mathematical models with
predictive power. In this way, our understanding of cell
signaling processes can be progressively advanced (Kearns
and Hoffmann, 2008).

Here, we review how mathematical modeling has impacted
our understanding of signaling through NF-kB pathways. First,
we summarize our original mathematical model, which is the
predecessor of many models used to study the regulation of
NF-kB dynamics (Table I). Then, we describe how mathema-
tical and computational models have been instrumental in
increasing our understanding of the control of NF-kB signal-
ing. We also discuss the emerging areas of research in which
mathematical models may shed light.

The original mathematical model
of the IjB–NF-jB signaling module

NF-kB activation involves stimulus-induced degradation of its
inhibitor IkB, which allows for its translocation to the nucleus.
The earliest attempt to capture the dynamics of these events in
mathematical equations was aimed at understanding how
NF-kB translocation and IkB association/dissociation rate
constants keep the majority of NF-kB in an inactive state in
resting cells (Carlotti et al, 2000). However, this work did not
result in a model that allowed for computational simulations of
the full NF-kB activation and attenuation process.

Our interest was to understand the differential functions, if
any, of the three IkB isoforms (IkBa, IkBb, and IkBe) that
modulate inflammatory activation of NF-kB. Biochemical
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studies had shown that all three sequester p65–p50, the
predominant NF-kB dimer, are degraded in response to
stimulation with tumor necrosis factor alpha (TNFa) (Ghosh
et al, 1998). Nevertheless, mice deficient in any one of these
three IkB proteins have distinct phenotypes, indicating that the
IkBs have different and non-overlapping functions (Beg et al,
1995; Klement et al, 1996; Memet et al, 1999; Mizgerd et al,
2002). As time-course data, derived from electrophoretic
mobility shift assays (EMSAs), indicated that the three IkB
proteins had differential dynamic control, we set out to
construct a mathematical model of NF-kB signaling to study
the specific roles of each IkB isoform in regulating the temporal
control of NF-kB (Hoffmann et al, 2002).

We defined the scope of the model to be that of the IkB–NF-
kB signaling module, in which the IKK activity as an input to
the model determines the NF-kB activity over time. The model
consisted of a system of differential equations based on
mass action kinetics of the association/dissociation,
synthesis/degradation, and translocation of IKK, IkB, and
NF-kB species. Of the 34 independent model parameters,
about one-third were derived from the extensive biochemical
literature on NF-kB, especially for the parameters of the
Michaelis–Menten reactions of IKK-mediated IkB phospho-
rylation. A further third, especially those parameters relating
to species half-lives, transport rates, and IkB–NF-kB
affinities, was constrained by published time-course data.
We used a genetic approach to reduce the complexity of the
signaling module to obtain the data used to fit the remaining

parameters (primarily mRNA and protein synthesis).
By mouse reverse genetics, we obtained cells deficient
in any two of the three IkB isoforms, thereby enabling us to
parameter fit three reduced models each containing only one
IkB isoform that were then combined into a wild-type
cell model.

Exploration of the model with computational simulations
resulted in two major insights. First, it described how
differential functions of the IkB isoforms could give rise to
strikingly different NF-kB dynamics in genetically reduced
cells. The role of IkBa, whose expression is induced by NF-kB,
was to provide negative feedback. This was aptly demon-
strated by pronounced oscillations in NF-kB activity in cells
lacking the other isoforms (Figure 1A). The role of IkBb and
IkBe was to dampen these oscillations. When all three
isoforms were present, the NF-kB response was biphasic, with
an initial NF-kB activity rising and falling within B1 h,
followed by a late activation phase characterized by a steady
intermediate level of activity (Figure 1B). Second, we explored
the ‘temporal dose–response’ characteristics of the NF-kB
signaling module by simulating the NF-kB response duration
for different stimulus durations. The model predicted that the
module would generate the initial phase of 60 min of NF-kB
activity even with much shorter stimuli, while only for longer
lasting stimuli (41 h) did the responses have durations
proportional to the input duration. This prediction
was confirmed by using EMSA on wild-type cells. Moreover,
we found experimentally that the initial phase of NF-kB
activity is sufficient to drive the expression of a subset
of inflammatory genes, while others require longer lasting
NF-kB activity. Hence, the functions of IkBa, IkBb, and IkBe
combine to allow the signaling module to distinguish between
short and longer lasting stimuli. A subsequent study of gene
expression in single cells also found that some target
genes require longer lasting TNFa stimulation than others
(Nelson et al, 2004).

Two of the more significant advances provided by our study
were that temporal dynamics of NF-kB help control the
expression of inflammatory genes, and that mathematical
modeling could be extremely useful in understanding the
molecular mechanisms that regulate NF-kB dynamics. This
spurred a number of subsequent modeling studies designed
to further understand the regulation of NF-kB dynamics, which
we review below. Some of these studies were primarily
theoretical in nature and pointed to interesting potential
dynamical properties of NF-kB signaling, whereas in others,
modeling was tightly integrated with experiment leading to a
plethora of unexpected insights into the mechanisms that control
NF-kB dynamics.

Mechanisms that control NF-jB dynamics
revealed by mathematical models

In this section, we highlight how mathematical and computa-
tional models have been applied with impressive success to
direct or illuminate experimental studies to characterize
additional feedback loops involving NF-kB, IKK dynamics,
crosstalk between inflammatory and non-inflammatory
inducers of NF-kB activity, and NF-kB oscillations.

Upon binding of TNFa (1), TNF receptor (TNFR) is activated, leading
to activation of the IkB kinase (IKK) (2). IKK dually phosphorylates inhibitor
of NF-kB (IkB) (3), which in a basal state holds NF-kB latent in the
cytoplasm. Phosphorylated IkB is targeted for ubiquitination (4) and
subsequently proteosome-mediated degradation (5). NF-kB, no longer
bound to IkB, enters the nucleus (6) where it may modulate gene
transcription. The genes for IkB are among the genes that are upregulated
by NF-kB (7). Newly synthesized IkBenters the nucleus, binds to NF-kB,
and promotes its export to the cytoplasm (8), thereby forming a negative
feedback loop that terminates the response. New IkB–NF-kB complexes
may enter the feedback loop, beginning with phosphorylation by IKK, if
TNF stimulation persists (9). There are three typical isoforms of IkB: IkBa,
IkBb, and IkBe. As discussed in the main text, expression of IkBa is
robustly induced by NF-kB and was a focus of initial modeling studies of
the pathway, whereas NF-kB-induced expression of IkBb and IkBe was a
topic of later investigations.

Box 1 Primer on TNFa signaling to NF-kB
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Multiple feedback loops

The original mathematical model of the IkB–NF-kB signaling
module revealed that NF-kB-induced expression of IkBa
provides negative feedback and that this feedback is a major
determinant of NF-kB temporal dynamics. Subsequent stu-
dies, integrating experimental analysis and computational
models, have shown that additional feedback mechanisms
also control NF-kB activity. One such loop involves IkBe,
which like IkBa, is expressed after TNFa stimulation in an
NF-kB-dependent manner (Tian et al, 2005). Unlike IkBa,
however, IkBe transcription is delayed by about 45 min relative
to the onset of nuclear NF-kB activity, as revealed by cells
deficient in IkBa and IkBb (Kearns et al, 2006). Intuitively,
delayed IkBe induction might provide oscillatory feedback in
antiphase with IkBa feedback, which combine to provide
steady overall levels of IkB with concomitant steady NF-kB
activity. A computational model derived from the original
model encapsulating this idea predicted that the duration of

NF-kB activity in response to a transient (45 min) TNFa
stimulation would be prolonged in cells deficient in both IkBa
and IkBe, compared to cells deficient in only one of these
isoforms, or to wild-type cells. This prediction, confirmed by
EMSA, indicated that IkBe is capable of providing post-
induction repression of NF-kB. Likewise, the expression of
inflammatory genes is prolonged in the ikBa�/�ikBe�/� cells
compared to ikBa�/� and wild-type cells, providing functional
evidence for the importance of IkBe in terminating the
inflammatory response (Kearns et al, 2006). Overall, the
negative feedbacks provided by IkBa and IkBe appear to work
in tandem to ensure rapid post-induction repression of NF-kB,
while suppressing sustained oscillations, thus solving a
classic shortcoming of simple linear control systems
(Coughanowr, 1991).

In addition to intracellular feedback due to IkBa and IkBe,
extracellular feedback might arise through autocrine signal-
ing. A prime example of this phenomenon relative to the
NF-kB pathway was found while exploring cell responses to
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The core of our original model of NF-kB signaling is depicted below as a set of linked biochemical reactions. The diagram omits reactions (e.g.
dissociation, reactions involving IkBb and IkBe) that are present in the full model but are not essential to oscillatory behavior. Complexes are denoted by ‘:’ and
generic sources and sinks for synthesis and degradation are denoted by ‘+.’ Rate parameters are shown above their respective reactions, named according to
the convention of the original model (Hoffmann et al, 2002). The input into the model is a step increase in IKK, which is a surrogate for TNFa stimulation. This
allows the first reaction, IKK binding to IkBa–NF-kB complex (a7), to proceed. The steps of phosphorylation, ubiquitination, and proteosomal degradation of IkBa
within this complex are lumped into a single reaction whose products are free IKK and free NF-kB (r4). NF-kB enters the nucleus, denoted by the suffix ‘n’ (k1).
This leads to synthesis of IkB mRNA transcript, denoted by the suffix ‘t’ (tr2). The half-life of the transcript is determined by tr3. Translation leads to synthesis of
new IkBa (tr1), whose half-life is determined by deg1. IkBa can enter (tp1) and leave (tp2) the nucleus, and in the nucleus, IkBa is also denoted with the suffix ‘n.’
Nuclear IkBa and NF-kB associate (a4), and together are exported to the cytoplasm (k2). In all, these steps form a negative feedback loop (also described in
Box 1), whose overall sequence is shown by the blue arrow. Mass action kinetics are used to convert these biochemical reactions into a system of ordinary
differential equations. For example, the equation for the time rate of change of cytoplasmic IkBa–NF-kB complex is given by

d½IkBa : NF-kB�
dt

¼ a4½IkBa�½NF-kB�þk2½IkBan : NF-kBn� � a7½IkBa : NF-kB�½IKK�
where the terms show increases in the amount of complex due to association of IkBa and NF-kB (a4) and export of nuclear complex (k2), and decreases in the
amount of complex due to association with IKK (a7). Equations are written in this way for each chemical species. In the full version of the original model, similar
reactions govern the behavior of IkBb and IkBe, resulting in additional differential equations. In this model formulation, the parameters are biochemical rates of
association, dissociation, catalysis, transport, synthesis, and degradation. Thus, their values may be quantitatively measured or constrained by biochemical
experiments. The procedure we used is summarized in the main text. Finally, to run the model, the initial concentrations of each species must be specified.
(Running the model means to numerically solve the differential equations, e.g. with Mathematica’s NDSolve function, to determine time courses of the
concentrations of each species.) We initialized the model with a biologically plausible total level of NF-kB (0.1mM) with all other concentrations set to zero. The
basal state of the cell (non-stimulated) is simulated by running the model starting from this initial state until it reaches steady state. At steady state, NF-kB is found
in the cytoplasm and nucleus, as well as free or complexed with IkB, but is predominantly found complexed in the cytoplasm in accordance with experimental
observations. Following a step increase in IKK, the model can be further run to simulate the effects of TNF stimulation.

Box 2 Primer on modeling NF-kB pathways using differential equations
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Table I Comparison of published NF-kB models

Model Predecessor Feedback Major changes from predecessor

The original mathematical model of NF-kB signaling
Hoffmann et al (2002) Carlotti et al (2000) Inducible IkBa

Constitutive IkBb, IkBe
K Responsive to IKK stimulus
K IkBa negative feedback loop

Direct descendants of the original model
Covert et al (2005) Hoffmann et al (2002) Inducible IkBa

Constitutive IkBb, IkBe
K LPS stimulus modeled as two additive

signals offset in time
K Transcription and translation rates

were re-fit
O’Dea et al (2007) Hoffmann et al (2002) Inducible IkBa

Constitutive IkBb, IkBe
K IkB degradation rates were

updated based on experimental
measurements

Cheong et al (2006) Hoffmann et al (2002) Inducible IkBa,
Constitutive IkBb, IkBe

K IKK time-course generator was
added

K Transcription, translation, and
degradation rates were re-fit

K Nuclear–cytoplasmic volume ratio
was added

Kearns et al (2006) O’Dea et al (2007) Inducible IkBa
Delayed inducible IkBb, IkBe

K IkBb and IkBe are inducible with a
45 min delay

K IkB degradation rates were altered to fit
new data

Werner et al (2005) Kearns et al (2006) Inducible IkBa
Delayed inducible IkBb, IkBe

K Cubic transcription rate
K LPS modeled by using its IKK time

course as an input
Moss et al (2008) Identical to the model

described in Werner et al (2005)
O’Dea et al (2008) Werner et al (2005) Inducible IkBa

Delayed inducible IkBb, IkBe
K Some rate parameters were modified to

model the effect of UV-induced NF-kB
activity

Mathes et al (2008) Werner et al (2005) Inducible IkBa
Delayed inducible IkBb, IkBe

K Some rate parameters were modified to
model the effect of IkBa mutants on
NF-kB signaling

Basak et al (2007) Werner et al (2005) Inducible IkBa, p100
Delayed inducible IkBb, IkBe

K Introduction of the IkB species p100
K LPS or TNF induces IKK2-mediated IkB

degradation
K LTb induces IKK1-mediated p100

degradation

Analysis of the original model by MR White and colleagues
Nelson et al (2004) Identical to the model

described in Hoffmann et al
(2002)

Ihekwaba et al (2004) Identical to the model
described in Hoffmann et al
(2002)

Ihekwaba et al (2005) Identical to the model
described in Hoffmann et al
(2002)

Ihekwaba et al (2007) Hoffmann et al (2002) Inducible IkBa
Constitutive IkBb, IkBe

K Identical to predecessor except some
IKK-related parameters changed to
match measurements based on
experiments where cells were
stimulated with IL-1

NF-kB models by M Kimmel and colleagues
Lipniacki et al (2004) Hoffmann et al (2002) Inducible IkBa

Inducible A20
K IkBb and IkBe were removed from

predecessor and A20 negative feedback
loop was added

K New assumptions about IKK activation
and deactivation

K Nuclear–cytoplasmic volume ratio was
added

K Transcription and translation rates were
re-fit

Lipniacki et al (2006) Lipniacki et al (2004) Inducible IkBa
Inducible A20

K Stochastic translation and transcription
K Some parameters were re-fit

Lipniacki et al (2007) Lipniacki et al (2006) Inducible IkBa
Inducible A20

K Introduction of TNF receptor and IKK
kinase

K Stochastic TNF receptor activation and
IkBa/A20 transcription

Fujarewicz et al (2007) Lipniacki et al (2004) Inducible IkBa
Inducible A20

K Equations identical to predecessor but
parameters were re-fit
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lipopolysaccharide (LPS). LPS is a component of bacterial cell
walls that serves as an important signal of infection activating
two intracellular pathways that branch at the receptor level,
respectively dependent on MyD88 and Trif. The NF-kB activity
in response to persistent LPS is normally steady over time, but
it is oscillatory when either the Trif- or MyD88-dependent
pathway is isolated by knockout of MyD88 and Trif,
respectively (Covert et al, 2005). Reminiscent of IkBa and
IkBe, the Trif- and MyD88-dependent oscillations are out of
phase. Computational modeling based on the original model
indicated that the reason that the oscillations are out of phase
is that the Trif- and MyD88-dependent pathways have similar
activation kinetics, but the Trif-dependent pathway is acti-
vated 30 min after the MyD88-dependent pathway. A search
for the biochemical mechanism underlying this delay un-
covered an autocrine signaling loop. Specifically, the MyD88-
dependent pathway was found to lead to fast, direct activation
of NF-kB, whereas the Trif-dependent pathway resulted in

slow indirect NF-kB activation via TNFa production, secretion,
and subsequent autocrine signaling (Figure 2). Interestingly,
the same autocrine mechanism ensures that NF-kB activity is
steady not only in response to persistent LPS but also to
transient LPS stimulation as well (Werner et al, 2005).

These discoveries suggest that mathematical modeling will
be useful in understanding many other potential feedbacks
involved in the regulation of NF-kB. For example, the
expression of the third inhibitor isoform, IkBb, is weakly
upregulated by TNFa (Kearns et al, 2006) and, although the
removal of this inhibitor does not unmask oscillations, some
more subtle signaling defects are likely to be present. The NF-
kB subunit RelB (Bren et al, 2001), the p50 subunit precursor
p105 (Ten et al, 1992), and the p52 subunit precursor p100
(Lombardi et al, 1995), are all potentially expressed in
response to TNFa, which could result in a change in NF-kB
dimer composition that could in turn affect all other
transcriptionally mediated feedback loops. Likewise, NF-kB

Table I Continued

Model Predecessor Feedback Major changes from predecessor

Joo et al (2007) Identical to the model
described in Lipniacki
et al (2004)

Other descendants of the original model
Sung and Simon (2004) Hoffmann et al (2002) Inducible IkBa K IkBb and IkBe are removed from

predecessor
K NF-kB induction of IkBa has an explicit

transcriptional time delay
K Some parameters were re-fit

Hayot and Jayaprakash
(2006)

Hoffmann et al (2002) Inducible IkBa K IkBb and IkBe are removed, and IkBa
has linear transcription rate

K Whole model is stochastic
Krishna et al (2006) Hoffmann et al (2002) Inducible IkBa K Reduces predecessor to a three-

component system with five
dimensionless parameters

Park et al (2006) Hoffmann et al (2002) Inducible IkBa
Constitutive IkBb, IkBe

K Explicit TNF receptor to IKK pathway
K IKK activity was affected by factors X

and Y representing effects of HBV
infection

Other NF-kB models
Cho et al (2003) None No inducible factors K Tree-like signaling pathway structure

with no feedback loops
K TNFa leads either to apoptosis (FADD)

or proliferation (NF-kB)
Monk (2003) None Inducible IkBa K Proposes NF-kB oscillations derive from

time delay of IkBa transcription
Janes et al (2005) None K Partial least-squares regression on a

large compendium of cytokine signaling
data

Janes et al (2006) Identical to the model
described in Janes et al (2005)

Piotrowska et al (2006) None No inducible factors K Two-component system with five
dimensionless parameters

K Negative correlation between IkBa
and NF-kB is directly assumed

K Proliferation rate is a function of NF-kB
Pogson et al (2006) None No inducible factors K Agent-based stochastic simulation

K Incorporates events from receptor
activation to NF-kB nuclear import

Rangamani and Sirovich
(2007)

None Inducible IkBa
Inducible IAP

K TNFa leads either to apoptosis (caspase)
or survival (NF-kB)

K IkBb and IkBe are not present
K Parameters were taken from a variety

of sources
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may be subject to a wide variety of extracellular feedback
mechanisms, especially through autocrine signaling. NF-kB
target genes include the cytokines TNFa (Collart et al, 1990;
Shakhov et al, 1990), many interleukins (Pahl, 1999), and
lymphotoxin-b (LTb) (Kuprash et al, 1996), all of which are
direct activators of NF-kB. Well-defined computational models
should prove useful in unraveling such complex feedback-rich
signaling systems, addressing among other questions the roles
of individual feedbacks and the need for all the feedbacks to
be in place.

Control of NF-jB dynamics through IKK

We defined the input of our original mathematical model of the
IkB–NF-kB signaling module to be IKK, rather than TNFa or
other extracellular ligands. This raised the question of how IKK
dynamics control the downstream NF-kB dynamics and how
IKK activity itself is regulated.

It is apparent that IKK dynamics are important in controlling
the timing of NF-kB activity. Experimentally, we found that the
initial phase of NF-kB activity invariantly lasted 60 min in
response to different concentrations of TNFa (Cheong et al,
2006), paralleling the response to different durations of
exposure to TNFa (Hoffmann et al, 2002). We found that the
original pathway model failed to reproduce this behavior,
despite an exhaustive attempt to refit the parameter values.
This suggested that the model was incomplete, and perhaps
omitted an important biochemical interaction needed to
explain the observed dynamics. We surmised that IKK, whose
regulation was not represented in detail in the original model,

played an important role in determining the NF-kB dynamics.
By examining the model’s responses to various IKK time
courses, we found that the fixed duration of the initial phase of
NF-kB activity could be explained if the IKK activity was
sharply attenuated. Specifically, the model predicted that at
any TNFa dose, the IKK activity rises quickly upon exposure to
TNFa, peaks after 5–10 min, and drops to a low but positive
level after another 10–20 min. Experiments utilizing IKK
assays validated this prediction (Cheong et al, 2006), indicat-
ing that the specific IKK dynamics are essential for maintaining
a normal biphasic NF-kB response. Importantly, this study
showed how incongruities between models and experiments
can be exploited to further understand the signaling system
of interest.

More generally, the NF-kB dynamics are sensitive to the
timing and duration of the IKK activity. As discussed above,
both in model and experiment, a peaked IKK profile, i.e. one
that rises quickly then falls quickly, generates a transient NF-
kB response of fixed duration. In contrast, an IKK profile that
plateaus, i.e. rises slowly to a sustained level, results in a
delayed rise to a sustained level of NF-kB activity. Importantly,
these different IKK dynamics help enable stimulus-specific
responses (Figure 3). For example, the peaked IKK profile
results from transient TNFa stimulation, whereas the sus-
tained IKK activity can result from transient LPS stimulation.
Furthermore, these different IKK profiles, which in turn result
in the different NF-kB dynamics, allow for some genes to be
specifically expressed in response to LPS and others to be
specifically expressed in response to TNFa, even though the
expression of these genes are all regulated by NF-kB (Werner
et al, 2005).

One important determinant of the IKK dynamics is A20,
which inhibits IKK activation by modifying the ubiquitination
pattern of a subunit of the TNF receptor complex (Wertz et al,
2004). The expression of A20 itself is induced by TNFa in an

Figure 1 Schematic of NF-kB dynamics in response to persistent TNFa.
(A) Oscillatory time course of NF-kB in response to TNFa in cells whose only
classical IkB is IkBa (see also BioModels database http://www.ebi.ac.uk/
biomodels, accession ID BIOMD0000000139). (B) Characteristic biphasic
time course of NF-kB signaling in response to TNFa in various wild-type cells.
NF-kB activity peaks around 30 min, drops to basal levels around 1 h, and rises
to an intermediate level thereafter (see also BioModels accession ID
BIOMD0000000140).

Figure 2 Feedback loops in NF-kB signaling. IKK may be activated by the
TNFa signaling pathway as well as the MyD88-dependent arm of the LPS
signaling pathway. IKK leads to NF-kB activity, which is regulated by a negative
feedback loop involving IkB (described in detail in Box 1), as depicted in the lower
center. TNFa-induced NF-kB activity also leads to A20 expression, and
subsequent decrease in IKK activation. Also, the Trif-dependent arm of the LPS-
signaling pathway activates the transcription factor interferon regulatory factor-3
(IRF3), leading to TNFa expression and subsequent autocrine signaling. Thus,
A20 and TNF form feedback loops that regulate NF-kB activity.
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NF-kB-dependent manner (Figure 2). This fact led to the
development of a version of the original model that suggested
that A20-mediated negative feedback is sufficient to produce
the sharply peaked IKK activity profile resulting from
persistent TNFa stimulation (Lipniacki et al, 2004). However,
initial experiments could not verify this prediction (Cheong
et al, 2006) and the mechanism that leads to a rapid
attenuation of TNFa-induced IKK activity remains an open
question (Delhase et al, 1999; Cheong et al, 2006; Schomer-
Miller et al, 2006). Nonetheless, A20 is clearly important in
inhibiting late IKK activity and is required for the drop in NF-
kB activity that separates the early and late phases in response
to TNFa (Lee et al, 2000; Werner et al, 2005). Computational
models thus point to the gap of current knowledge about
A20 and IKK regulation in general as a barrier to further
understanding of NF-kB dynamics, and modeling work in this
area should prove fruitful for additional studies integrating
models and experiments.

Crosstalk between the IjB–NF-jB module
and other pathways

NF-kB is activated by numerous inflammatory stimuli, such
as TNFa and LPS as discussed above, and also by many non-
inflammatory stimuli (Hayden and Ghosh, 2004). One such
stimulus is LTb, a cytokine implicated in the normal develop-
ment of lymph nodes. Unlike classical inflammatory stimuli,
LTb-mediated activation of NF-kB does not occur through the
degradation of NF-kB-bound IkB (Beinke and Ley, 2004).
Rather, it occurs through degradation of the inhibitory domain
of NF-kB-bound p100, an NF-kB protein precursor that, as a
homodimeric complex, has IkB-like function. Furthermore,
p100 is an NF-kB target gene whose expression can be
stimulated by TNFa, leading to potential crosstalk between
the TNFa and LTb pathways. Specifically, an expanded version

of the original model that included the classical IkBs and p100
predicted that exposing cells to TNFa leads to a greater
percentage of NF-kB molecules bound to p100 instead of to the
classical IkBs, thereby priming the cells to subsequent LTb
exposure. Indeed, experimentally, LTb-induced NF-kB activity
can be increased B3-fold in TNF-primed versus naı̈ve cells,
with concomitant increases in expression of NF-kB-responsive
genes (Basak et al, 2007).

Another non-inflammatory activator of NF-kB is ultraviolet
(UV) irradiation. One of the effects of UV irradiation is bulk
arrest of translation in a dose-dependent manner, which
inhibits basal and induced synthesis of IkB. We recently
showed, that although NF-kB is liberated when free IkB and
NF-kB-bound IkB are gradually turned over, the NF-kB
signaling module is actually remarkably robust to such
metabolic perturbations (O’Dea et al, 2008). However, UV
can dramatically amplify the response to simultaneous
inflammatory stimulation. This synergy has implications for
how inflammation can enhance the effects of cancer-asso-
ciated stresses (O’Dea et al, 2008).

NF-kB can also be activated indirectly by signaling pathways
that do not principally involve NF-kB. For example, TNFa,
through activation of IKK and NF-kB, can induce the secretion
of transforming growth factor-alpha (TGFa), leading to
autocrine stimulation of the epidermal growth factor receptor.
Taken together, TNFa and TGFa induce production of
interleukin-1, providing an autocrine signal that can bring
about a second episode of IKK and NF-kB activity (Janes et al,
2006). This helps to explain why, for example, IKK activity can
be better predicted computationally from the combination of
growth factor and inflammatory signaling data versus inflam-
matory signaling data alone (Janes et al, 2005, 2006).

NF-jB oscillations

Our analyses of the IkB–NF-kB signaling module concluded
that oscillations in NF-kB activity, primarily driven by negative
feedback through IkBa, underlie biphasic NF-kB dynamics.
These oscillations are largely hidden in wild-type cells by the
effects of IkBb and IkBe (Hoffmann et al, 2002), and
oscillations do not seem to alter gene expression programs
when compared to the biphasic response (Barken et al, 2005),
raising doubts about the functional significance of oscillations.
Nonetheless, the apparent mathematical and biochemical
complexity underlying the existence and particular shape of
these oscillations intrinsically begs the question of how to
generate and control them. These questions have so far been
primarily addressed through computational analysis.

Negative feedback is a common way to achieve oscillatory
behavior. Indeed, a simple negative feedback system com-
prised of two components that interact linearly is sufficient to
generate oscillations (Hoffmann et al, 2002), but it is important
to note that this abstraction is fundamentally different from the
IkB–NF-kB module. Linear systems do not require persistent
stimulation to exhibit undamped oscillations whereas the
module does. Also, the mathematical dependency between
individual parameters and oscillation frequency (e.g. mono-
tonic relationship versus existence of an optimum) does
not translate even qualitatively from the linear system to
the module (R Cheong and A Levchenko, unpublished

Figure 3 Schematic of stimulus-specific NF-kB responses. Both TNFa and
LPS activate NF-kB through IKK, yet the NF-kB responses to each are different.
In response to a 45-min pulse of TNFa, NF-kB activity rises quickly then
terminates after approximately 60 min (bottom right). In contrast, in response to a
45-min pulse of LPS, NF-kB activity rises slowly over 2 h (bottom left). The
NF-kB response correlates with the IKK activity profile, which is highly peaked in
response to TNFa (upper right) but sustained in response to LPS (upper left).
This illustrates how IKK helps to mediate stimulus-specific NF-kB responses.
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observations). Thus, components in the module and their
nonlinear interactions play important roles in controlling and
shaping NF-kB oscillations. Different aspects of NF-kB
oscillations, such as the timing and amplitude of peaks and
troughs, are sensitive to different parameters in the original
model, as measured by sensitivity coefficients (an analog of
metabolic control coefficients). Some parameters are predicted
to be broadly important for nearly all aspects of oscillations,
and they all relate to reactions involving IkBa (Ihekwaba
et al, 2004; Joo et al, 2007). These parameters cooperate in a
complex, nonlinear way to modulate oscillations (Ihekwaba
et al, 2005), and overall, their effects on the timing and
amplitude of the initial peak can be rationalized based on their
contribution to total IkB levels and the speed of the feedback
loop (Cheong et al, 2006; Mathes et al, 2008; Moss et al, 2008).
Interestingly, the highly sensitive parameters correlate well
with a minimal subset of reactions from the original model that
sustain oscillations (Box 2). Additionally, a condensed model
involving only NF-kB, IkBa, and IkBa mRNA still oscillates
(Krishna et al, 2006), and in principle, a model with only
NF-kB and IkBa with transcriptional delay can as well (Monk,
2003). Taken together, these theoretical perspectives indicate
that the IkBa portion of the module is indeed the strongest
generator of oscillations.

Interest in oscillations was further spurred by observations
in which the NF-kB activity spiked repetitively (‘spiky
oscillations’) in cells overexpressing fluorescent protein-
tagged NF-kB or IkBa, with the timing and frequency of spikes
varying from cell to cell (Nelson et al, 2004). This is distinctly
different than the biphasic dynamics observed in the popula-
tion average (Hoffmann et al, 2002), and reconciling the two
has become an important goal of mathematical analysis. Our
statistical analysis of NF-kB activity measured by immunocy-
tochemistry in single wild-type cells indicates that biphasic
population dynamics is easily distinguished from an ensemble
of individually oscillating cells, regardless of the mechanism
underlying spiky oscillations (Barken et al, 2005). The
intuitive conclusion, also supported by computational analy-
sis, was that overexpression of NF-kB or IkBa components
alters the oscillatory potential of the module. Others have
attempted to attribute spiky oscillations and their variations
from cell to cell to fluctuations in the rates of the chemical
reactions comprising the pathway. Full stochastic simulation
of a module in which the only IkB species is IkBa indicates that
intrinsic biochemical randomness results in minimal deviation
from the deterministic NF-kB response unless transcription
and translation rates have been badly estimated (Hayot and
Jayaprakash, 2006). Rather, fluctuations in extrinsic factors,
such as the number of molecules of active IKK or NF-kB, need
to be invoked to reconcile single live cell and average
responses. However, these conclusions are at odds with
simulations of other IkBa-only models (Lipniacki et al, 2006,
2007), in which only a few biochemical reactions need to be
stochastic to generate distributions of responses similar to
those obtained in live cells. Differences in parameter values or
the inclusion of an A20 feedback loop in the latter models
(Lipniacki et al, 2004) may explain these differing conclusions.
In any case, at minimum, accurate measurements of IkB
transcription and translation rates are needed to test the role of
stochasticity in individualized cell responses.

Emerging developments in mathematical
modeling of NF-jB signaling

As seen above, computationally oriented studies have led to
numerous and varied insights into the molecular mechanisms
that regulate NF-kB dynamics and inflammatory gene expres-
sion, and will surely continue to do so in the future. In this
section, we highlight other aspects of NF-kB biology for which
mathematical modeling is likely to play an important role.

Information encoding and decoding

Secretion of NF-kB-activating cytokines like TNFa is one way
in which one cell can communicate to another and alter its
behavior. One general question is what information is
conveyed by secreted signals, how this information is encoded
by the signaling cell, and how it is interpreted by the receiving
cell. The unique temporal dynamics of NF-kB responses to
TNFa provides a model system to address the principles
underlying cell–cell communication.

For TNFa, it is possible to use changes in its concentration
over time to transmit information about the distance between
the signaling and receiving cells. Specifically, in a local
infection, a macrophage will secrete a brief pulse of TNFa in
a self-limited manner. Because of the effect of diffusion, nearby
cells experience temporal patterns of changes in TNFa
concentration that depend on the separation distance: the
concentration experienced by a cell drops exponentially and
while the duration of exposure to the cytokine increases
modestly with distance. Experimentally, we observed that
NF-kB is able to respond to amounts of TNFa that vary over
several orders of magnitude, including very small ones. A
model incorporating these observations, therefore, predicted
that cells in a wide region around a local infection would
mount an inflammatory defense. Moreover, because the
amplitude of NF-kB activity scales according to the logarithm
of TNFa concentration, the model also predicts that NF-kB
responses drop roughly linearly with distance. Thus, cells near
the infection would mount a vigorous inflammatory defense,
whereas cells further away would have a tempered response,
suggesting that the TNFa–NF-kB pathway is optimized so that
cells respond in a way commensurate with their distance from
danger (Cheong et al, 2006).

We anticipate that mathematical and computational models
tightly coupled to experimental analysis will be indispensable
in further understanding the information processing charac-
teristics of NF-kB pathways. Because modeling to date has
been very successful in demonstrating how dynamic IKK
signals are transformed into dynamic NF-kB signals by the
IkB–NF-kB module (Werner et al, 2005; Cheong et al, 2006),
we especially look forward to progress in understanding
events upstream of IKK or downstream of NF-kB. For example,
multiple cytokine signaling pathways converge on IKK, but
how each transmits information through IKK is poorly
understood, as is how multiple cytokines convey information
simultaneously through the same module. On the downstream
end, different NF-kB-responsive genes are expressed after
different durations of NF-kB activity (Hoffmann et al, 2002;
Barken et al, 2005), but the basis of these differential responses
is unknown. Combining pathway models with mathematical
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analysis of promoters and enhancers is likely to shed light on
this issue (Krishna et al, 2006).

Rational drug targeting

NF-kB is involved in numerous physiologic responses, such as
inflammation and apoptosis, and is implicated in myriad
diseases like arthritis, autoimmune and inflammatory dis-
orders, and cancer (Kumar et al, 2004). As such, numerous
anti-inflammatory compounds are under development to
target NF-kB (Karin et al, 2004), and mathematical models
are beginning to be used to understand how these potential
drugs affect NF-kB signaling.

One initial study in this direction examined the effect of
three drug classes—inhibitors of IKK, the proteosome, and
nuclear import machinery—on NF-kB oscillations in response
to TNFa (Sung and Simon, 2004). The effect of each class was
simulated by altering the appropriate kinetic rate parameters
in a simplified version of the original model containing only
one IkB-like species. In this way, NF-kB oscillations were
predicted to be disrupted with high doses of IKK or proteosome
inhibitors, or low doses of nuclear import inhibitors. Similarly,
another study predicted that an IKK inhibitor dampens the
NF-kB response to interleukin-1 (Ihekwaba et al, 2007). These
types of simulations could potentially be used to further
understand drug specificity or the effect of multiple drugs
applied simultaneously.

In addition, drug-targeting studies may benefit from
extending this idea further, that is, by performing a ‘computa-
tional drug screen.’ Each kinetic rate parameter in the IkB–NF-
kB module represents a potential target for modulation by a
drug, so we are studying how sensitive the biphasic NF-kB
response to TNFa is to alterations in each parameter. For
example, we find that the initial transient phase but not the late
sustained phase of NF-kB activity is robust to variations in the
values of the parameters that control the half-life of IkBa
(D Barken et al. in preparation). This suggests that even drugs
that target reactions within the central NF-kB signaling module
may in fact have selective effects, for example, by inhibiting
prolonged inflammation without completely abrogating acute
responses. This surprising possibility would be difficult to
foresee by qualitative reasoning alone, but quantitative
predictions provided by modeling are crucial in rationally
identifying rate-limiting reactions for specific phases of the NF-
kB temporal profile. We anticipate that similar methods will
prove useful in rational selection of drug targets to mediate
highly specific therapeutic effects.

Other trends in applications of NF-jB models

Paralleling the many physiological roles of NF-kB, models of
NF-kB signaling are beginning to be applied in a variety of
contexts. For example, TNFa-induced NF-kB dynamics were
measured in liver cells infected with or without hepatitis B
virus. A model of TNFa signaling to NF-kB suggests that an
unknown IKK upregulating factor can reconcile subtle changes
in NF-kB dynamics due to infection (Park et al, 2006). Another
model examined the role of NF-kB in neural stem cells and
predicts that the level of NF-kB activity correlates with the
rate of cell proliferation (Piotrowska et al, 2006). Tests of

predictions from these and related models are likely to be
useful in elucidating the role of NF-kB dynamics in physiolo-
gical and pathophysiological contexts.

Another trend that we anticipate continuing is merging of
the NF-kB signaling models with models of other pathways.
Initial steps have been in the areas of modeling LPS-induced
TNFa signaling (Covert et al, 2005; Werner et al, 2005), TNF–
EGF–insulin crosstalk and autocrine signaling (Janes et al,
2005, 2006), and crosstalk between TNF-induced caspases and
NF-kB-induced antiapoptotic factors (Rangamani and Siro-
vich, 2007). The interest in linking NF-kB models to other
pathway models is likely to grow, and since TNFa induces JNK
activity, and because interleukins, T-cell receptors, B-cell
receptors, and other stimuli activate NF-kB (Hayden and
Ghosh, 2004), we can expect expansion into these areas.
Elements of some existing models may prove useful in this
regard (Schoeberl et al, 2002).

As a corollary to this trend, we expect existing NF-kB models
to merge with each other. Most of the published NF-kB models
described above are ‘backwards compatible,’ in the sense that
they recapitulate the essential dynamic properties of their
predecessors while demonstrating some new dynamic proper-
ties. However, the descendant models are not necessarily
compatible with each other. To address this issue, we have, for
example, developed a ‘consensus model’ that recapitulates a
multitude of combined experiments (Hoffmann et al, 2002;
Werner et al, 2005; Cheong et al, 2006; Kearns et al, 2006;
O’Dea et al, 2007) and is thus increasingly predictive (R
Cheong and A Levchenko, in preparation). Advanced para-
meter fitting techniques are likely to emerge as important tools
in developing highly comprehensive consensus models
(Fujarewicz et al, 2007).

Finally, an increasing use of the core IkB–NF-kB model is in
illustrating new modeling environments and techniques. For
example, the NF-kB pathway has been used to illustrate a new
technique to graphically represent models in a way that is easy
to interpret and yet is mathematically precise (Cho et al, 2003).
Another application used NF-kB to exhibit an agent-based
stochastic modeling method (Pogson et al, 2006). NF-kB
models have also been used to illustrate efficient ways to
investigate parameter sensitivity (Fujarewicz et al, 2007; Joo
et al, 2007). Models of the IkB–NF-kB signaling module are
attractive in these settings because they are usually moderate
in size (a few dozen parameters and equations) yet display
complex behavior, much of which can be rationalized through
careful analysis of these models. As modeling becomes more
accessible to non-specialists, we anticipate model analysis and
applications will grow rapidly. In fact, one can already
interactively explore the NF-kB model online through the
Sigmoid project (http://www.sigmoid.org/) (Cheng et al,
2005). The growth and dissemination of such new tools can
only contribute to NF-kB modeling efforts.

Conclusion

Signal transduction pathways are dedicated sets of chemical
reactions responsible for detection, processing, and delivery of
the information about changes in the cell environment to the
‘decision centers’ of a cell. Unlike wires and antennas used in
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human-built devices designed for information transfer, cells
are limited to using chemistry as the basis for the sophisticated
and robust passing of signals within complex and convoluted
intracellular spaces. The underlying complexity may thus be
foreign to our anthropomorphic attempts to confer the ideas of
wires, transistors, and resistors to sophisticated liquidity of
biological processes. Nevertheless, as much as the behavior of
electrical circuits can be captured by mathematical equations,
so too can the intricacies of signal transduction be understood
through computational techniques.

A myriad of soluble signaling molecules, coupled to each
other through feedback loops and pathway crosstalk, impinge
upon NF-kB. The regulation and dynamics of the resulting
signaling network are rich and complex and their underlying
mechanisms are not immediately transparent. Mathematical
modeling has cut through the haze by helping to summarize
experimental observations and develop a deep and coherent
understanding of the NF-kB signaling. Such computational
approaches are essential for continued advancements in the field
of signal transduction, as exemplified by the profound qualitative
and quantitative insights obtained thus far for NF-kB signaling.
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