
FREE PROBABILITY AND RANDOM MATRICES

Lecture 4: Free Harmonic Analysis, October 4, 2007

The Cauchy Transform. Let C
+ = {z ∈ C | Im(z) > 0} denote the

complex upper half plane, and C
− = {z | Im(z) < 0} denote the lower

half plane. Let ν be a probability measure on R and for z �∈ R let

G(z) =

∫
R

1

z − t
dν(t)

G is the Cauchy transform of the measure ν. Let us briefly check that
the integral converges to an analytic function on C

+.

Lemma. G is an analytic function on C
+ with range contained in C

−.

Since |z−t|−1≤ |Im(z)|−1 and ν is a probability measure the integral
is always convergent. If Im(w) �= 0 and |z − w| < |Im(w)|/2 then for
t ∈ R we have ∣∣∣∣z − w

t − w

∣∣∣∣ <
|Im(w)|

2
· 1

|Im(w)| =
1

2

so the series
∑∞

n=0(
z−w
t−w

)n converges uniformly to t−w
t−z

on |z − w| <

|Im(w)|/2. Thus (z− t)−1 = −∑∞
n=0(t−w)−(n+1)(z−w)n on |z−w| <

|Im(w)|/2. Hence

G(z) = −
∞∑

n=0

[∫
R

(t − w)−(n+1)dν(t)

]
(z − w)n

is analytic on |z − w| < |Im(w)|/2.
Finally note that for Im(z) > 0, we have for t ∈ R, Im((z−t)−1) < 0,

and hence Im(G(z)) < 0. Thus G maps C
+ into C

−. �
Lemma. (i ) lim

y→∞
y G(iy) = −i and (ii ) sup

y≥0,x∈R

y |G(x + iy)| = 1

Proof. (i )

y Im(G(iy)) =

∫
R

y Im
( 1

iy − t

)
dν(t) =

∫
R

−y2

y2 + t2
dν(t)

= −
∫

R

1

1 + (t/y)2
dν(t) → −

∫
R

dν(t)

where y → ∞ and since (1 + (t/y)2 )−1 ≤ 1 we may apply Lebesgue’s
Dominated Convergence Theorem.

1



2 LECTURE 4: FREE HARMONIC ANALYSIS

We have y Re(G(iy)) =

∫
R

−yt

y2 + t2
dν(t). But for all y > 0 and for all t

∣∣∣∣ yt

y2 + t2

∣∣∣∣ ≤ 1

2

and |yt/(y2 + t2)| converges to 0 as y → ∞. Therefore y Re(G(iy) → 0
as y → ∞, again by the Dominated Convergence Theorem.

(ii ) For y > 0 and z = x + iy,

y |G(z)| ≤
∫

R

y

|z − t| dν(t) =

∫
R

y√
(x − t)2 + y2

dν(t) ≤ 1

Thus sup
y≥0,x∈R

y |G(x + iy)| ≤ 1. By (i ) however, the supremum is 1. �

Theorem. Suppose a < b. Then

lim
y→0+

−1

π

∫ b

a

Im(G(x + iy)) dx = ν((a, b)) +
1

2
ν({a, b})

If ν1 and ν2 are probability measures with Gν1 = Gν2, then ν1 = ν2.

Proof. We have

Im(G(x + iy)) =

∫
R

Im
( 1

x − t + iy

)
dν(t) =

∫
R

−y

(x − t)2 + y2
dν(t)

Thus∫ b

a

Im(G(x + iy)) dx =

∫
R

∫ b

a

−y

(x − t)2 + y2
dx dν(t)

= −
∫

R

∫ (b−t)/y

(a−t)/y

1

1 + x̃2
dx̃ dν(t)

= −
∫

R

tan−1
(b − t

y

)
− tan−1

(a − t

y

)
dν(t)

where we have let x̃ = (x − t)/y.
So let f(y, t) = tan−1((b − t)/y) − tan−1((a − t)/y) and

f(t) =

⎧⎪⎨
⎪⎩

0 t /∈ [a, b]

π/2 t ∈ {a, b}
π t ∈ (a, b)
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Then limy→0+ f(y, t) = f(t), and, for all y > 0 and for all t, we have
|f(y, t)| ≤ π. So by Lebesgue’s Dominated Convergence Theorem

lim
y→0+

∫ b

a

Im(G(x + iy)) dx = − lim
y→0+

∫
R

f(y, t) dν(t)

= −
∫

R

f(t) dν(t) = −π
(
ν((a, b)

)
+

1

2
ν({a, b})

)
This proves the first claim. The first claim shows that if Gν1 = Gν2

then ν1 and nu2 agree on all intervals and thus are equal. �
Remark. The proof of the next theorem depends on a fundamental
result of R. Nevalinna which provides an integral representation for
an analytic function from C

+ to C
+. Suppose that φ : C

+ → C
+ is

analytic, then there is a unique Borel measure σ on R and real numbers
α and β, with β ≥ 0 such that for z ∈ C

+

φ(z) = α + βz +

∫
R

1

t − z
dσ(t)

This integral representation is achieved by letting ξ = iz+1
iz−1

, and thus

z = i1+ξ
1−ξ

. Then one defines ψ by ψ(ξ) = iφ(z) and obtains an ana-

lytic function ψ mapping the open unit disc, D, into the complex right
half plane. Since ψ the real and imaginary parts of ψ are harmonic
conjugates, it is enough to work with the real part. Now Re(ψ) is a
positive harmonic function on D; when Re(ψ) is harmonic on an open
set containing D one gets the measure from Cauchy’s Integral Theo-
rem; in general one dilates Re(ψ) to get a harmonic function on D,
and then takes a limit as the dilation shrinks to Re(ψ). This integral
representation is usually attributed to G. Herglotz (1911). The details
can be found in the book of Akhiezer and Glazman1.

Theorem (R. Nevanlinna). Suppose G : C
+ → C

− is analytic and
sup y |G(x + iy)| = 1 . Then there is a unique probability measure on
R such that G(z) =

∫
R

1
z−t

dν(t).

Proof. By the remark above there is a unique finite measure on R such
that G(z) = α + βz +

∫
1+tz
z−t

dσ(t) with α ∈ R and β ≤ 0.
Next we will use the condition

(1) sup
y>0, x∈R

y |G(x + iy)| = 1

Considering first the imaginary part we get that β = 0 and for

all N ,
∫ N

−N
y2

t2+y2 (1 + t2) dσ(t) ≤ 1. Thus
∫

R
(1 + t2) dσ(t) ≤ 1. Let

1N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space
(1961), vol. 2, Ch. VI, §58
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ν(E) =
∫

E
1 + t2dσ(t). From the real part of (1) we get that for all

y > 0

y

∣∣∣∣α +

∫
R

t(y2 − 1)

t2 + y2
dν(t)

∣∣∣∣ ≤ 1

Therefore

α = lim
y→∞

∫
R

t(1 − y2)

t2 + y2
dσ(t)

= − lim
y→∞

∫
R

t
1 − y−2

1 + (t/y)2
dσ(t) = −

∫
tdσ(t)

Hence

G(z) =

∫
−t +

1 + tz

z − t
dσ(t) =

∫ −tz + t2 + 1 + tz

z − t
dσ(t)

=

∫
R

1

z − t
(1 + t2)dσ(t) =

∫
R

1

z − t
dν(t)

�
Remark. If {νn}n is a sequence of finite Borel measures on R we
say that {νn}n converges in distribution to the measure ν if for ev-
ery f ∈ Cb(R) (the continuous bounded functions on R) we have
limn

∫
f(t) dνn(t) →

∫
f(t) dν(t). We say that {νn}n converges vaguely

to ν if for every f ∈ C0(R) (the continuous functions on R vanishing
at infinity) we have limn

∫
f(t) dνn(t) →

∫
f(t) dν(t). Convergence in

distribution implies vague convergence but not conversely. However
if ν is a probability measure then {νn}n converges vaguely to ν does
imply that {νn}n converges to ν in distribution2.

Theorem. Suppose that (νn)n is a sequence of probability measures
on R with Gn the Cauchy transform of νn. Suppose {Gn}n converges
pointwise to G on C

+. If limy→∞ y G(iy) = −i then there is a unique
probability measure ν on R such that νn → ν in distribution, and
G(z) =

∫
1

z−t
dν(t).

Proof. {Gn}n is uniformly bounded on compact subsets of C
+ (as

|G(z)| ≤ |Im(z)|−1 for the Cauchy transform of any probability mea-
sure), so by Montel’s theorem {Gn}n is relatively compact in the topol-
ogy of uniform convergence on compact subsets of C

+, thus, in partic-
ular, {Gn}n has a subsequence which converges uniformly on compact
subsets of C

+ to an analytic function, which must be G. Thus G is an-
alytic, as it is the uniform limit of analytic functions. Now for z ∈ C

+,
G(z) ∈ C−. Also for each n ∈ N, x ∈ R and y ≥ 0 y |Gn(x + iy)| ≤ 1.

2see Kai Lai Chung Probability, 2nd ed. (1984) §3.3 and 3.4.
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Thus ∀x ∈ R, ∀y ≥ 0, y |G(x + iy)| ≤ 1. So in particular, G is non-
constant. If for some z ∈ C

+, Im(G(z)) = 0 then by the minimum
modulus principle G would be constant. Thus G maps C

+ into C
−.

Hence by Nevanlinna’s theorem there is a unique probability measure
ν such that G(z) =

∫
R

1
z−t

dν(t).

Now by the Helley selection theorem3 there is a subsequence {νnk
}k

converging vaguely to some measure ν̃. For fixed z the function t 	→
1/(z − t) is in C0(R). Thus for Im(z) > 0, Gnk

(z) =
∫

R

1
z−t

dνnk
(t) →∫

R

1
z−t

dν̃(t). Therefore G(z) =
∫

1
z−t

dν(t) i.e. ν = ν̃. Thus {νnk
}k con-

verges vaguely to ν. Since ν is a probability measure {νnk
}k converges

vaguely to ν. Thus {νn} converges in distribution to ν. �

Corollary. If {νn}n is a sequence of probability measures on R with
Gn → G pointwise on C

+. Then {νn} converges vaguely to a finite
measure ν.

The analytic relation between moments and free cumulants involves
finding a functional inverse for the Cauchy transform of a probabil-
ity measure, ν. One cannot do this in general without making some
assumptions about ν. A fairly general condition was found by Hans
Maassen in 19924

Theorem (H. Maassen). Let ν be a probability measure on R with
σ2 =

∫
−R

t2dν(t) < ∞ and
∫

t dν(t) = 0. Then G is a bijection between

{z | Im(z) > σ} and {1
z
| Im(z) > 2σ} −i

2σ

Compactly Supported Measures. When the probability measure
ν has compact support then one can find a region in C

+ upon which
the Cauchy transform is univalent.

Suppose ν is a probability measure on R and supp(ν) ⊆ [−r, r].
Then ν has moments mn =

∫
tndν(t) of all orders and |mn| ≤ rn. Let

M(z) = 1 + m1z + m2z + · · · be the moment generating function. If

3E. Lukacs, Characteristic Functions, 2nd ed., Griffin, 1972
4Addition of Freely Independent Random Variables, J. Funct. Anal., 106 (1992),

409-438.
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|z| < r−1 the series converges. If |z| > r then |z−1| < r−1 and

G(z) =

∫
R

1

z − t
dν(t) =

1

z

∫
R

∑
n≥0

z−ntndν(t)

=
1

z

∑
n≥0

z−n

∫
R

tndν(t) =
1

z

∑
n≥0

z−nmn =
1

z
M

(1

z

)

Let f(z) = zM(z) = G(1
z
) = z + m1z

2 + m2z
3 + · · · . Then f(0) = 0

and f ′(0) = 1. Suppose |z1|, |z2| ≤ (4r)−1 then∣∣∣∣f(z1) − f(z2)

z1 − z2

∣∣∣∣ ≥ Re
(f(z1) − f(z2)

z1 − z2

)

= Re

∫ 1

0

d

dt

[
f(z1 + t(z2 − z1))

z2 − z1

]
dt

=

∫ 1

0

Re(f ′(z1 + t(z2 − z1))) dt

Now

Re(f ′(z)) = Re(1 + 2zm1 + 3x2m2 + · · · )
≥ 1 − 2 |z| r − 3 |z|2 r2 − · · ·

= 2 − (1 + 2(|z| r) + 3(|z| r)2 + · · · ) = 2 − 1

(1 − |z| r)2

So for |z| < (4r)−1 we have

Re(f ′(z)) ≥ 2 − 1

(1 − 1/4)2
=

2

9

Hence for |z1| , |z2| < (4r)−1 we have |f(z1) − f(z2)| ≥ 2
9
|z1 − z2|. In

particular f is one-to-one on {z | |z| < (4r)−1}. Also

|f(z)| = |z| |1 + m1z + m2z
2 + · · · |

≥ |z| (2 − (1 + r|z| + r2|z|2 + · · · )) = |z|
(
2 − 1

1 − r |z|
)

≥ |z|
(
2 − 1

1 − 1/4

)
=

2

3
|z|

Thus for |z| = (4r)−1 we have |f(z)| ≥ (6r)−1. Moreover, since f is
one-to-one on {z | |z| ≥ (4r)−1}, the curve γ = {f(eit/(4r)) | 0 ≤ t ≤
2π} only wraps once around the origin.

Thus f maps {z | |z| < (4r)−1} to the interior of the curve γ. Hence

{z | |z| < (6r)−1} ⊆ {f(z) | |z| < (4r)−1}
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We will denote the inverse of f under composition by f 〈−1〉. Thus f 〈−1〉

is analytic on {z | |z| < (6r)−1} and has a simple zero at z = 0. Thus

K(z) =
1

f 〈−1〉(z)

is meromorphic on {z | |z| < (6r)−1} and has a simple pole at z = 0.
Now

K(G(z)) = 1/(f 〈−1〉(G(z))) = 1/(f 〈−1〉(f(z−1))) = z

and G(K(z)) = f(f 〈−1〉(z)) = z.

Theorem. Suppose supp(ν) ⊂ [−r, r], then Gν is univalent on the
open disc with centre 0 and radius (6r)−1

Let R(z) = K(z) − 1
z
. Then R is analytic on {z | |z| < (6r)−1}, and

G
(1

z
+ R(z)

)
= z = R(G(z)) +

1

G(z)

which is the same relation as was found combinatorially.

Bercovici and Voiculescu found a theorem that relates convergence
in distribution of a sequence of probability measures with support in
[−r, r] to the uniform convergence of the corresponding R-transforms
on a disc.

Theorem (Bercovici & Voiculescu). Let {νn}n be a sequence of proba-
bility measures on R with compact support, let Rn be the corresponding
sequence of R-transforms. Then
i) ∃ r s.t. supp(νn) ⊆ [−r, r] and ν with supp(ν) ⊆ [−r, r] such that

νn
D−→ ν

if and only if

ii) ∃ s > 0 such that {Rn}n converges uniformly on {z | |z| < s} to an
analytic function R on {z | |z| < s}.

Example: The Semi-circle Law. As an example of Stieltjes inver-
sion let us take a familiar example and calculate its Cauchy transform
and then using only the Cauchy transform find the density by using
Stieltjes inversion. The density of the semi-circle law is given by

dν

dt
=

√
4 − t2

2π
s dt on [−2, 2]

the moments are given by

mn =

∫ 2

−2

tndν(t) =

{
0 n odd
cn/2 n even
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where the cn’s are the Catalan numbers:

cn =
1

n + 1

(
2n

n

)
Now let M(z) be the moment generating function

M(z) = 1 + c1z
2 + c2z

4 + · · ·
then

M(z)2 =
∑

m,n≥0

cmcnz
2(m+n) =

∑
k≥0

(
∑

m+n=k

cmcn)z2k

Now we saw in lecture three that∑
m+n=k

cmcn = ck+1

so

M(z)2 =
∑
k≥0

ck+1z
2k =

1

z2

∑
k≥0

ck+1z
2(k+1)

therefore

z2M(z)2 = M(z) − 1 or M(z) = 1 + z2M(z)2

Therefore z2M(z)2 − M(z) + 1 = 0. Solving the quadratic equation
we have

M(z) =
1 ±

√
1 − 4z2

2z2
and M(0) = 1

Now
1 +

√
1 − 4t2

2t2
→ ∞ as t → 0,

whereas
1 −

√
1 − 4t2

2t2
=

2

1 +
√

1 − 4t2
→ 1 as t → 0

Therefore we choose the minus sign

M(z) =
1 −

√
1 − 4z2

2z2

Now

G(z) =
1

z
M

(1

z

)
=

1

z
· 1 −

√
1 − 4z−2

2z−2
=

z −
√

z2 − 4

2

Also 1 + z2M(z)2 = M(z) implies

1 +
(1

z
M

(1

z

))2

= z
(1

z
M(z)

)
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i.e.

1 + G(z)2 = zG(z) or z = G(z) +
1

G(z)

Thus K(z) = z + 1
z

and R(z) = z i.e. all so all cumulants of the
semi-circle law are 0 except κ2, which equals 1.

Now let us apply Stieltjes inversion to G(z). To do this we have to
choose a branch of

√
z2 − 4. To achieve this we choose a branch for

each of
√

z − 2 and
√

z + 2. Now
√

z − 2 = |z − 2|1/2eiθ/2 where θ is
the argument of z − 2. Choosing a branch means connecting 2 to ∞
with a curve along which θ will have a jump discontinuity.

-2 -1 1 2
-0.2

0.2

0.4

0.6

0.8

1

1.2

θ1(z)
θ2(z)

z

We choose θ1, the argument of z − 2, to be such that 0 ≤ θ1 < 2π.
Similarly we choose θ2, the argument of z + 2, such that 0 ≤ θ2 < 2π.
Thus θ1 + θ2 is continuous on C \ [−2,∞). However ei(θ1+θ2)/2 is
continuous on C \ [−2, 2] because ei(0+0)/2 = 1 = ei(2π+2π)/2, so there is
no jump as the half line [2,∞) is crossed.

Now√
z2 − 4 =

√
z − 2

√
z + 2 =

∣∣z2 − 4
∣∣1/2

eiθ1/2eiθ2/2 =
∣∣z2 − 4

∣∣1/2
ei(θ1+θ2)/2

Im(
√

(x + iy)2 − 4) =
∣∣(x + iy)2 − 4

∣∣1/2
sin((θ1 + θ2)/2)

lim
y→0

Im(
√

(x + iy)2 − 4) = |x2 − 4|1/2

{
0 |x| > 2

1 |x| < 2

=

{
0 |x| > 0√

4 − x2 |x| < 2

lim
y→0+

Im(G(x + iy)) = lim
y→0+

Im
(x + iy −

√
(x + iy)2 − 4

2

)

=

{
0 |x| > 2

−
√

4 − x2

2 |x| < 2



10 LECTURE 4: FREE HARMONIC ANALYSIS

Therefore

lim
y→0+

−1

π
Im(G(x + iy)) =

{
0 |x| > 2√

4 − x2

2π |x| < 2

Hence we recover our original density.

Stieltjes Inversion at an Atom. When the Cauchy transform has
a pole at a ∈ R the limit calculation using the dominated convergence
theorem used above will not apply. A situation that frequently occurs
is that G(z) has a simple pole at a, i.e. G(z) = f(a)/(z − a) with f
analytic on a neighbourhood of a, then ν has an atom at a with weight
f(a).

Theorem. Suppose G(z) = f(z)/(z − a) with a a real number and f
analytic on a neighbourhood, B(a, 2r), of a. Then

lim
y→0+

−1

π

∫ a+r

a−r

Im(G(x + iy)) dx = f(a)

Proof. Let C be the boundary of the rectangle with vertices at a+y+ir,
a − y + ir, a − y − ir, and a + y − ir. We will parameterize the four
sides as follows.

C1

C2

C3

C4

a + r + iy

a − r − iy

a

C1: the top side; γ1(t) = t+ iy where t decreases from a+r to a−r;
C2: the left side; γ2 = a − r + it where t decreases from y to −y;
C3: the bottom side; γ3(t) = t − iy where t increases from a − r to

a + r
C4: the right side; γ4(t) = a + r + it where t increases from −y to y

Then by Cauchy’s integral theorem

1

2πi

∫
C

f(z)

z − a
dz = f(a)
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So let us calculate separately each integral over Ci. Now∫
C1

G(z) dz =

∫ a−r

a+r

G(x + iy) and

∫
C3

G(z) dz =

∫ a+r

a−r

G(x − iy)

Thus ∫
C1+C3

G(z) dz =

∫ a+r

a−r

G(x − iδ) − G(x + iy) dx

= −
∫ a+r

a−r

2i Im(G(x + iy)) dx

Thus ∫ a+r

a−r

−1

π
Im(G(x + iy)) dx =

1

2πi

∫
C1+C3

G(z) dz

So we only need to prove that for i = 2 or 4

lim
y→0+

∫
Ci

G(z) dz = 0

we shall only do the case i = 2. Since f is analytic on B(0, r) there is
M > 0 such that |f(z)| ≤ M for z ∈ C2. Thus∣∣∣∣

∫
C2

G(z) dz

∣∣∣∣ ≤
∫ y

−y

2M

|r − it| dt ≤ 2My

r

Thus for i = 2 and 4

lim
y→0+

∫
Ci

G(z) dz = 0

�


