
FREE PROBABILITY AND RANDOM MATRICES

Lectures given at the Fields Institute

Lecture 1: September 13, 2007

Moments and Cumulants of Random Variables

Let ν be a probability measure on R. If
∫

R |t|
k dν(t) < ∞ we say that

ν has a moment of order k, the kth moment is denoted αk =
∫

R tkdν(t).

Exercise 1. If ν has a moment of order k then ν has all moments of
order m for m < k.

The integral φ(t) =
∫

eist dν(t) is always convergent and is called the
characteristic function of ν. It is always uniformly continuous on R
and φ(0) = 1, so for |t| small enough φ(t) 6∈ (−∞, 0] and we can define
the continuous function log(φ(t)). If ν has a moment of order k then φ
has a derivative of order k, and conversely. Moreover αk = i−kφ(k)(0),

so at the level of formal power series φ(t) =
∑

k≥0 αk
(it)k

k!
. Thus if ν

has a moment of order k we can write log(φ(t)) =
∑k

j=0 kj
(it)j

j!
+ o(tk)

with

kj = i−j dj

dtj
log(φ(t))

∣∣∣∣
t=0

The numbers (kj) are the cumulants of ν. To distinguish them from
the free cumulants which will be defined below, we will call (kj) the
classical cumulants of ν. The moments (αj)j of ν and the cumulants
(kj) of ν each determine the other through the moment-cumulant for-
mulas :

kn =
∑

1·r1+···+n·rn=n
r1,...,rn≥0

r=r1+···+rn

(−1)r−1(r − 1)!
n!

(1!)r1 · · · (n!)rnr1! · · · rn!
αr1

1 · · ·αrn
n

αn =
∑

1·r1+···+nrn=n
r1,...,rn≥0

n!

(1!)r1 · · · (n!)rnr1! · · · rn!
kr1

1 · · · krn
n

We shall see below how to use partitions to simplify these equations.
1
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A very important random variable is the Gaussian or normal random

variable. It has the distribution P (t1 ≤ X ≤ t2) =

∫ t2

t1

e−(t−a)2/(2σ2)

√
2πσ2

dt

where a is the mean and σ2 is the variance. The characteristic function
of a Gaussian random variable is φ(t) = exp(iat− σ2t2

2
). Thus log φ(t) =

a (it)1

1!
+ σ2 (it)2

2!
. Hence for a Gaussian random variable all cumulants

beyond the second are 0.

Exercise 2. Suppose ν has a fourth moment and we write φ(t) =

1+α1
(it)
1!

+α2
(it)2

2!
+α3

(it)3

3!
+α4

(it)4

4!
+o(t4) where α1, α2, α3, and α4 are

the first four moments of ν. Let log(φ(t)) = k1(it) + k2
(it)2

2!
+ k3

(it)3

3!
+

k4
(it)4

4!
+ o(t4). Using the Taylor series for log(1 + x) find a formula for

α1, α2, α3, and α4 in terms of k1, k2, k3, and k4.

Moments of a Gaussian Random Variable. Let X be a Gaussian
random variable with mean 0 and variance 1. Then

P (t1 ≤ X ≤ t2) =

∫ t2

t1

e−t2/2 dt√
2π

.

Let us find the moments of X. α1 = 0, α2 = 1, and by integration
by parts αk = E(Xk) =

∫
R tke−t2/2 dt√

2π
= (k − 1)αk−2 for k ≥ 3. Thus

α2k = (2k− 1)(2k− 3) · · · 5 · 3 · 3 · 1 = (2k− 1)!! and α2k−1 = 0 for all k.
Let us find a combinatorial interpretation of these numbers. For a

positive integer n let [n] = {1, 2, 3, . . . , n}, and P(n) denote all parti-
tions of the set [n] i.e. π = {V1, . . . , Vk} ∈ P(n) means V1, . . . , Vk ⊆ [n],
V1 ∪ · · · ∪ Vk = [n], and Vi ∩ Vj = ∅ for i 6= j; V1, . . . , Vk are called the
blocks of π. We let #(π) denote the number of blocks of π and #(Vi)
the number of elements in the block Vi. A partition is a pairing if each
block has size 2. The pairings of [n] will be denoted P2(n).

Let us count the number of pairings of [n]. 1 must be paired with
something and there are n − 1 ways of choosing it. Thus #(P2(n)) =
(n − 1)#(P2(n − 2)) = (n − 1)!!. So E(X2n) = #(P2(2n)), but the
analogy runs deeper and is known as Wick’s formula.

Gaussian vectors. Let ~X : Ω → Rn, ~X = (X1, . . . , Xn) be a random

vector. We say that ~X is Gaussian if there is a positive definite n× n
real matrix B such that

E(Xi1 · · ·Xik) =

∫
Rn

ti1 · · · tik
exp −1

2
〈B~t,~t〉d~t

(2π)n/2 det(B)−1/2

where 〈·, ·〉 denotes the standard inner product on Rn. Let C = (cij) be
the covariance matrix, that is cij = E

(
[Xi − E(Xi)] [Xj − E(Xj)]

)
. In
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fact C = B−1 and if Xi, . . . , Xn are independent then B is a diagonal
matrix, see Exercise 3. If Y1, . . . , Yk are independent Gaussian random
variables and ~X = A~Y , then ~X is a Gaussian random vector and every
Gaussian random vector is obtained in this way. If ~X = (X1, . . . , Xn)

is a complex random vector we say that ~X is a complex Gaussian ran-
dom vector if (Re(X1), Im(X1), . . . , Re(Xn), Im(Xn)) is a real Gaussian
random vector.

Exercise 3. Let ~X = (X1, . . . , Xn) be a Gaussian random vector with

density
exp(−1

2
〈B~t,~t〉)

(2π)n/2 det(B)−1/2
. Let C = B−1.

i) Show that B is diagonal if and only if {X1, . . . , Xn} are inde-
pendent 1

ii) By first diagonalizing B show that cij = E((Xi−E(Xi)) · (Xj −
E(Xj))).

The Moments of a Complex Gaussian Random Variable. Sup-
pose X and Y are independent real Gaussian random variables with
mean 0 and variance 1. Then Z = (X + iY )/

√
2 is a complex Gaussian

random variable with mean 0 and variance E(ZZ) = 1
2
E(X2 +Y 2) = 1

moreover

E(ZmZ
n
) =

{
0 m 6= n
m! m = n

Exercise 4. Let Z = (X + iY )/
√

2 be a complex Gaussian random
variable with mean 0 and variance 1.

i) By making the substitution ~t = O~s, show that for m 6= n∫
R2(t1 + it2)

m(t1 − it2)
ne−(t21+t22)dt1dt2 = 0, where

O =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
ii) Show that E(ZmZ

n
) = 0 for m 6= n.

iii) By switching to polar coordinates show that E(|Z|2n) = n!.

Wick’s Formula2. Let (X1, . . . Xn) be a real Gaussian random vector
and i1, . . . ik ∈ [n]. Gian Carlo Wick found in 1950 a simple expression
for E(Xi1 · · ·Xik). If k is even and π ∈ P2(k) let Eπ(X1, . . . , Xk) =∏

(r,s)∈π E(XrXs). For example if π = {(1, 3)(2, 6)(4, 5)} then Eπ(X1,

X2, X3, X4, X5, X6) = E(X1X3)E(X2X6)E(X4X5). Eπ is a k-linear
functional.

1i.e. if i1, . . . , ik are distinct and n1, . . . , nk are positive integers then E(Xn1
i1

· · ·Xnk
ik

) = E(Xn1
i1

) · · ·E(Xnk
ik

)
2Gian Carlo Wick, The Evaluation of the Collision Matrix (1950)
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Theorem 1. Let (X1, . . . , Xn) be a real Gaussian random vector and
i1, . . . , ik ∈ [n]. Then E(Xi1 · · ·Xik) =

∑
π∈P2(k) Eπ(Xi1 , . . . , Xik).

Proof. Suppose that the covariance matrix C of (X1, . . . , Xn) is diag-
onal, i.e. the Xi’s are independent. Consider (i1, . . . ik) as a func-
tion [k] → [n]. Let {a1, . . . , ar} be the range of i and Aj = i−1(aj).
Then {A1, . . . , Ar} is a partition of [k] which we denote ker(i). Then

E(Xi1 · · ·Xik) =
∏r

t=1 E(X
#(At)
at ). Let us recall that if X is a real ran-

dom variable of mean 0 and variance c then for k even E(Xk) = ck/2×
#(P2(k)) =

∑
π∈P2(k) Eπ(X, . . . , Xk) and for k odd E(Xk) = 0. Thus

we can write the product
∏

t E(X
#(At)
at ) as a sum

∑
π∈P2(k) Eπ(Xi1 , . . . ,

Xik) where the sum runs over all π’s which only connect elements in
the same block of ker(i). Since E(XirXis) = 0 for ir 6= is we can relax
the condition that π only connect elements in the same block of ker(i).
Hence

(1) E(Xi1 · · ·Xik) =
∑

π∈P2(k)

Eπ(Xi1 , . . . , Xik)

Finally let us suppose that C is arbitrary. Let the density of (X1, . . . ,

Xn) be
exp(− 1

2
〈B~t,~t〉)

(2π)n/2 det(B)−1/2 and choose an orthogonal matrix O such that

D = O−1BO is diagonal. Let

 Y1
...

Yn

 = O−1

 X1
...

Xn

. Then (Y1, . . . ,

Yn) is a real Gaussian random vector with the diagonal covariance
matrix D. Then

E(Xi1 · · ·Xik) =
n∑

j1,...,jk=1

oi1j1oi2j2 · · · oikjk
E(Yj1 · · ·Yjk

)

=
n∑

j1,...,jk=1

oi1j1 · · · oikjk

∑
π∈P2(k)

Eπ(Yi1 , . . . , Yik)

=
∑

π∈P2(k)

Eπ(Xi1 , . . . , Xik)

�

Since both sides of equation (1) are k-linear we can extend by lin-
earity to the complex case.
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Corollary 2. Suppose (X1, . . . , Xn) is a complex Gaussian random
vector then

E(Xi1 · · ·Xik) =
∑

π∈P2(k)

Eπ(Xi1 , . . . , Xik)

Gaussian Random Matrices. Let X be an N × N matrix with
entries fij where fij = xij +

√
−1 yij is a complex Gaussian random

variable such that

i) {xij}i≥j ∪ {yij}i>j is independent

ii) E(fij) = 0, E(|fij|2) = 1
N

Then X is a self-adjoint Gaussian random matrix. Such a random
matrix is often called a GUE random matrix (GUE = Gaussian unitary
ensemble).

Exercise 5. Let X be an N × N GUE random matrix, with entries
fij = xij =

√
−1 yij normalized so that E(|fij|2) = 1.

i) Consider the random N2-vector (x11, . . . , xNN , x12, . . . , x1N , . . . ,
xN−1,N , y12, . . . , yN−1,N). Show that the density of this vector

is ce−
1
2
Tr(X2)dX where dX =

∏N
i=1 dxii

∏
i<j dxijdyij, for some

constant c.
ii) Evaluate the constant c.

A genus expansion for the GUE. Let us calculate E(Tr(Xk)), for
X a N × N GUE random matrix. We first suppose for convenience
that the entries of X have been normalized so that E(|fij|2) = 1. Now

E(Tr(Xk)) =
N∑

i1,...,ik=1

E(fi1i2fi2i3 · · · fiki1).

By Wick’s formula E(fi1i2fi2i3 · · · fiki1) = 0 whenever k is odd. So let
us evaluate

E(fi1i2fi2i3 · · · fi2ki1) =
∑

π∈P2(2k)

Eπ(fi1i2 , fi2i3 , · · · , fi2ki1)

Now E(firir+1fisis+1) will be 0 unless ir = is+1 and is = ir+1 (us-
ing the convention that i2k+1 = i1). If ir = is+1 and is = ir+1

then E(firir+1fisis+1) = E(
∣∣firir+1

∣∣2) = 1. Thus given (i1, . . . , i2k),
E(fi1i2fi2i3 · · · fi2ki1) will be the number of pairings π of [2k] such that
for each pair (r, s) of π, ir = is+1 and is = ir+1.

In order to easily count these we introduce the following notation.
We regard the 2k-tuple (i1, . . . , i2k) as a function i : [2k] → [N ]. A
pairing π = {(r1, s1)(r2, s2), . . . , (rk, sk)} of [2k] will be regarded as a
permutation of [2k] by letting (ri, si) be the transposition that switches
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ri with si and π = (r1, s1) · · · (rk, sk) as the product of these transpo-
sitions. We also let γ2k be the permutation of [2k] which has the one
cycle (1, 2, 3, . . . , 2k). With this notation our condition on the pairings
has a simple expression. Let π be a pairing of [2k] and (r, s) be a pair
of π. The condition ir = is+1 can be written as i(r) = i(γ2k(π(r)))
since π(r) = s and γ2k(π(r)) = s + 1. Thus Eπ(fi1i2 , fi2i3 , . . . , fi2ki1)
will be 1 if i is constant on the orbits of γ2kπ and 0 otherwise. Thus

E(Tr(X2k)) =
N∑

i1,...,i2k=1

no

{
π ∈ P2(2k)

∣∣∣ i is constant on the
orbits of γ2kπ

}
=

∑
π∈P2(2k)

no

{
i : [2k] → [N ]

∣∣∣ i is constant on the
orbits of γ2kπ

}
=

∑
π∈P2(2k)

N#(γ2kπ)

Now let π and γ be any two permutations of [n] and suppose that
the group generated by π and γ acts transitively on [n], then by a
theorem of Alain Jacques (1968) and Robert Cori (1969) there is a
positive integer g such that #(π)+#(π−1γ)+#(γ) = n+2(1−g), and
g is the minimal genus of a surface upon which a ‘graph’ of π relative
to γ can be embedded.

Example 3. γ = (1, 2, 3, 4, 5, 6), π = (1, 4)(2, 5)(3, 6), #(π) = 3,
#(γ) = 1, #(π−1γ) = 2, #(π) + #(π−1γ) + #(γ) = 6, ∴ g = 1
Conclusion: for a pairing π of [2k]

◦ #(π−1γ) = k + 1− 2g for some g ≥ 0,
◦ #(π−1γ) ≤ k + 1 with equality only when g = 0 i.e. when the

graph is planar.

Now change the normalization of X so E(|fij|2) = 1
N

, and let tr =
1
N

Tr. Then

E(tr(X2k)) = N−(k+1)
∑

π∈P2(2k)

N#(γ2kπ)

=
∑

π∈P2(2k)

N−2gπ(2)

because #(π−1γ) = #(γπ−1) in general and if π is a pairing π = π−1.
Thus ck = limN→∞ E(tr(X2k)) is the number of non-crossing pairings
of [2k], i.e. the cardinality of |NC2(2k)|, which is the k-th Catalan
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number 1
k+1

(
2k
k

)
. ck is also the 2kth moment of the semi-circle law:

ck =
1

2π

∫ 2

−2

t2k
√

4− t2dt
!2 !1 1 2

0.15
0.3

This is Wigner’s famous semi-circle law, which says that the spectral

measures of {XN}N , relative to the state E(tr(·)), converge to
√

4−t2

2π
dt

i.e. the expected proportion of eigenvalues of X between a and b is

asymptotically
∫ b

a

√
4−t2

2π
dt. If we regard X : Ω → MN(C) we can say

something stronger. On the complement of a set of probability 0, the
same result holds for X(ω).

Asymptotic Freeness of Independent GUE’s. Suppose that for
each N we have X1, . . . , Xs are independent N ×N GUE’s. For nota-
tional simplicity we suppress the dependence on N . Suppose m1, . . . ,
mr are positive integers and i1, i2, . . . , ir ∈ [s] such that i1 6= i2, i2 6=
i3, . . . , ir−1 6= ir. Consider the random matrix (which depends on N)

Y := (Xm1
i1

− cm1I)(Xm2
i2

− cm2I) · · · (Xmr
ir

− cmrI)

Each factor is centred asymptotically and adjacent factors involve in-
dependent matrices. We shall show that E(tr(Y )) → 0 and we shall call
this property asymptotic freeness. This will then motivate Voiculecu’s
definition of freeness.

First let us recall the principle of inclusion-exclusion (Da Silva, 1853).
Let S be a set and E1, . . . , Er ⊆ S. Then

|S \ (E1 ∪ · · · ∪ Er)| = |S| −
r∑

i+1

|Ei|+
∑
i1 6=i2

|Ei1 ∩ Ei2|+ · · ·

+ (−1)k
∑

i1,...,ik
distinct

|Ei1 ∩ · · · ∩ Eik |+ · · ·+ (−1)r |E1 ∩ · · · ∩ Er|(3)

for example, |S \ (E1 ∪ E2)| = |S| − (|E1|+ |E2|) + |E1 ∩ E2|.
We can rewrite the right hand side of (3) as

|S \ (E1 ∪ · · · ∪ Er)| =
∑

M⊆[r]

M={i1,...,im}

(−1)m |Ei1 ∩ · · · ∩ Eim|

=
∑

M⊆[r]

(−1)|M |

∣∣∣∣∣ ⋂
i∈M

Ei

∣∣∣∣∣
provided we make the convention that

⋂
i∈∅ Ei = S and (−1)|∅| = 1.
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Notation 4. Let i1, . . . , im ∈ [s]. We regard these labels as the colours
of the matrices Xi1 , Xi2 , . . . , Xim . Given a pairing π ∈ P2(m), we say

that π respects the colours ~i := (i1, . . . , im), or to be brief: π respects
i, if ir = is whenever (r, s) is a pair of π. Thus π respects i if and only
if π only connects matrices of the same colour.

Lemma 5. Suppose i1, . . . , im ⊆ [s] are positive integers. Then

E(tr(Xi1 · · ·Xim)) =
∣∣∣{π ∈ NC2(m) | π respects ~i

}∣∣∣ + O(N−2)

Proof.

E(tr(Xi1 · · ·Xim)) =
∑

j1,...,jm

E(f
(i1)
j1j2

· · · f (im)
jm,j1

)

=
∑

j1,...,jm

∑
π∈P2(m)

Eπ(f
(i1)
j1,j2

, . . . , f
(ik)
jm,j1

)

=
∑

π∈P2(m)

π respects i

∑
j1,...,jm

Eπ(f
(i1)
j1,j2

, . . . , f
(ik)
jm,j1

)

by (2)
=

∑
π∈P2(m)

π respects i

N−2gπ

= |{π ∈ NC2(m) | π respects i}|+ O(N−2)

�

Theorem 6. If i1 6= i2, i2 6= i3, . . . , ir−1 6= ir then limN E(tr(Y )) = 0.

Proof. Let let I1 = {1, . . . ,m1}, I2 = {m1 + 1, . . . ,m1 + m2}, . . . ,
Ir = {m1 + · · ·+ mr−1 + 1, . . . ,m1 + · · ·+ mr}.

E(tr((Xm1
i1

− cm1I) · · · (Xmr
ir

− cmrI)))

=
∑

M⊆[r]

(−1)|M |
[ ∏

i∈M

cmi

]
E

(
tr

( ∏
j /∈M

X
mj

ij

))
=

∑
M⊆[r]

(−1)|M |
[ ∏

i∈M

cmi

]
|{π ∈ NC2(∪j 6∈MIj) | π respects i}|

+ O(N−2)

Let S = {π ∈ NC2(m) | π respects i} and Ej = {π ∈ S | elements
of Ij are only paired amongst themselves }. Then∣∣ ⋂

j∈M

Ej

∣∣ =

[ ∏
j∈M

cmj

]∣∣{π ∈ NC2(∪j /∈MIj) | π respects i}
∣∣
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Thus

E(tr((Xm1
i1
−cm1I) · · · (Xmr

ir
−cmrI))) =

∑
M⊆[r]

(−1)|M |∣∣ ⋂
j∈M

Ej

∣∣+O(N−2)

So we must show that
∑

M⊆[r](−1)|M |
∣∣ ⋂

j∈M EJ

∣∣ = 0. However by

inclusion-exclusion this sum equals |S \ (E1 ∪ · · · ∪ Er)|. Now S \(E1∪
· · · ∪Er) is the set of pairings of [m] respecting i such that at least one
element of each interval is connected to another interval. However this
set is empty because elements of |S \ (E1 ∪ · · · ∪ Er)| must connect
each interval to at least one other interval in a non-crossing way and
thus form a non-crossing partition of the intervals {I1, . . . , Ir} without
singletons, in which no pair of adjacent intervals are in the same block,
and this is impossible. �

Asymptotic Freeness. For each N let AN,i be the polynomials in
XN,i with complex coefficients. Let AN be the algebra generated by
AN,1, . . . ,AN,s. For A ∈ AN let φN(A) = E(tr(A)). Thus AN,1, . . . ,
AN,s are unital subalgebras of the unital algebra AN with state φN .
We have just shown that if we have a positive integer r such that for
each N and each AN,1, . . . , AN,r ∈ AN such that

◦ limN φN(AN,i) = 0 for i = 1, 2, . . . , r
◦ AN,i ∈ AN,ji

for i = 1, 2, . . . , r
◦ j1 6= j2, j2 6= j3, . . . , jr−1 6= jr

then limN φN(AN,1AN,2 · · ·AN,r) = 0. We thus say that the subalgebras
AN,1, . . . ,AN,s are asymptotically free because, in the limit as N tends
to infinity, they satisfy the freeness property of Voiculescu.

Freeness. Let (A, φ) be a unital algebra with a state. SupposeA1, . . . ,
As are unital subalgebras. We say thatA1 . . .As are freely independent
with respect to φ (or just free) if whenever we have a1, . . . , ar ∈ A such
that

◦ φ(ai) = 0 for i = 1, . . . , r
◦ ai ∈ Aji

for i = 1, . . . , r
◦ j1 6= j2, j2 6= j3, . . . , jr−1 6= jr

we must have φ(a1 · · · ar) = 0.


