FREE PROBABILITY AND RANDOM MATRICES

LECTURES GIVEN AT THE FIELDS INSTITUTE

LECTURE 1: SEPTEMBER 13, 2007

MOMENTS AND CUMULANTS OF RANDOM VARIABLES

Let v be a probability measure on R. If [, [¢|* dv(t) < co we say that
v has a moment of order k, the k" moment is denoted oy, = [, t*du(t).

Exercise 1. If v has a moment of order & then v has all moments of
order m for m < k.

The integral ¢(t) = [ e** dv(t) is always convergent and is called the
characteristic function of v. It is always uniformly continuous on R
and ¢(0) = 1, so for |t| small enough ¢(t) & (—o0, 0] and we can define
the continuous function log(¢(t)). If v has a moment of order k then ¢
has a derivative of order k, and conversely. Moreover a; = i~¥¢®*)(0),

so at the level of formal power series ¢(t) = >, ak(i;;—?k. Thus if v

has a moment of order k we can write log(4(t)) = Z?:o k; (i;!)j + o(t")
with

t=0

The numbers (k;) are the cumulants of v. To distinguish them from
the free cumulants which will be defined below, we will call (k;) the
classical cumulants of v. The moments («;); of v and the cumulants
(k;) of v each determine the other through the moment-cumulant for-
mulas:

n!

am= ) A - (a1

L-ry+-4nrp=n

T1 Tn
VAR o6

We shall see below how to use partitions to simplify these equations.
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A very important random variable is the Gaussian or normal random
to o—(1—a)2/(20?)
e
variable. It has the distribution P(t; < X <ty) = —dt

t1 V 27‘[‘0’2

where a is the mean and ¢? is the variance. The characteristic function
of a Gaussian random variable is ¢(t) = exp(iat— ) Thus log ¢(t) =
a% + 02%. Hence for a Gaussian random varlable all cumulants
beyond the second are 0.

Exercise 2. Suppose v has a fourth moment and we write ¢(t) =

14+ o (Zt) +@2(2? +a3(33 + 0y (Zt) +o(t*) where oy, ay, az, and a4 are

the ﬁrst four moments of v. Let log(gb( )) = ki(it) + ko5 (It) + /{:3
k4 (ZZ!)AL + o(t*). Using the Taylor series for log(1 + z) find a formula for
a1, g, g, and oy in terms of kq, ko, ks, and ky.

Moments of a Gaussian Random Variable. Let X be a Gaussian
random variable with mean 0 and variance 1. Then

Pty < X < t) " ey
I vera

Let us find the moments of X. «a; = 0, oy = 1, and by integration
by parts oy, = E(X*) = [ tke_tQ/Qj—Q% = (k — 1)ag_ for k > 3. Thus
agy = (2k—1)(2k—3)---5-3-3-1 = (2k— 1)!! and g1 = 0 for all k.

Let us find a combinatorial interpretation of these numbers. For a
positive integer n let [n] = {1,2,3,...,n}, and P(n) denote all parti-
tions of the set [n] i.e. m = {V4,...,Vi} € P(n) means V4, ..., Vi C [n],
ViU---UV, =[n],and V;NV; =0 for i # j; Vi,...,Vj are called the
blocks of m. We let #(7) denote the number of blocks of 7 and #(V;)
the number of elements in the block V;. A partition is a pairing if each
block has size 2. The pairings of [n] will be denoted Py (n).

Let us count the number of pairings of [n]. 1 must be paired with
something and there are n — 1 ways of choosing it. Thus #(Pa(n)) =
(n — D)#(Pa(n —2)) = (n — ! So E(X?") = #(P2(2n)), but the

analogy runs deeper and is known as Wick’s formula.

Gaussian vectors. Let X : Q — R", X = (X1,...,X,) be a random

vector. We say that X is Gaussian if there is a positive definite n x n
real matrix B such that

-1 e e
B ‘ - exp T(Bt,ﬂdt
E(Xi1 T Xlk) = /n tiy -ty (271')”/2 det(B)—l/Q

where (-, -) denotes the standard inner product on R”. Let C' = (¢;;) be
the covariance matrix, that is ¢;; = E([X; — E(X;)] [X; — E(X;)]). In
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fact C = B~ and if Xj,..., X, are independent then B is a diagonal
matrix, see Exercise 3. If Y7,...,Y} are independent Gaussian random
variables and X = A?, then X is a Gaussian random vector and every
Gaussian random vector is obtained in this way. If X = (X;,...,X,)

is a complex random vector we say that Xisa complex Gaussian ran-
dom vector if (Re(X7),Im(X7),...,Re(X,),Im(X,,)) is a real Gaussian
random vector.

Exercise 3. Let X = (X1,...,X,) be a Gaussian random vector with
exp(—3(Bt.1))
(2m)"/2 det(B)~1/2
i) Show that B is diagonal if and only if {X;,...,X,} are inde-
pendent *
i) By first diagonalizing B show that ¢;; = E((X; —E(X;)) - (X; —
B(X3)))-
The Moments of a Complex Gaussian Random Variable. Sup-
pose X and Y are independent real Gaussian random variables with
mean 0 and variance 1. Then Z = (X +iY)/v/2 is a complex Gaussian
random variable with mean 0 and variance E(ZZ) = 1E(X?+Y?) =1

moreover
E(Zm?"):{ . m#n
m: m=n

Let C = B~'.

density

Exercise 4. Let Z = (X 4 iY)/v/2 be a complex Gaussian random
variable with mean 0 and variance 1.
i) By making the substitution t = O3, show that for m # n
Jao (1 + i)™ (8 — ity) e~ ) dt dt, = 0, where

o= [ty )

i) Show that E(Z"Z") = 0 for m # n.
ii) By switching to polar coordinates show that E(|Z[*") = n!.

Wick’s Formula?. Let (X,...X,) be a real Gaussian random vector
and i1, ...1 € [n]. Gian Carlo Wick found in 1950 a simple expression
for E(X;, -+ X;,). If kis even and m € Pao(k) let E (Xy,..., X)) =
[Tiger E(X: X5). For example if 7 = {(1,3)(2,6)(4,5)} then E.(X;,
X27X3,X4,X5,X6) == E(Xng)E(XQXG)E<X4X5) Eﬂ- is a k-linear
functional.

Le. if i1,...,%; are distinct and nq,...,n; are positive integers then E(Xﬁ1

XY = B(XM) - E(X)
2Gian Carlo Wick, The Evaluation of the Collision Matrix (1950)



4 FREE PROBABILITY AND RANDOM MATRICES

Theorem 1. Let (X1,...,X,) be a real Gaussian random vector and
Z Zk S [ ] Then E(X L Xlk) = Zﬂ'EPQ(k) Eﬂ-<Xi1, C 7sz)

Proof. Suppose that the covariance matrix C' of (Xq,...,X,) is diag-
onal, i.e. the X;’s are independent. Consider (iy,...7;) as a func-
tion [k] — [n]. Let {ai,...,a,} be the range of i and A; = i~ !(a;).
Then {A4,..., A} is a partition of [k] which we denote ker(i). Then
BE(X,, - X ) [T, E(X2"). Let us recall that if X is a real ran-
dom Varlable of mean 0 and variance c then for k even E(X*) = c*/2 x

#(P2(k)) = > repyr) Ex(X, ..., Xy) and for k odd E(X*) = 0. Thus
XxEA Er(X;

we can write the product [ [, E( P

as a sum ) .p
X, ) where the sum runs over all 7’s which only connect elements in

the same block of ker(7). Since E(X; X;,) = 0 for i, # is we can relax
the condition that 7 only connect elements in the same block of ker(z).
Hence

(1) E<X21Xlk) = Z EW(XZ'N'”ﬂXik)
weP2(k)

Finally let us suppose that C'is arbitrary. Let the density of (X1, ...,

X,) be (2:;1? /(; diif;ﬁ)l 7 and choose an orthogonal matrix O such that
Y X1

D = O7'BO is diagonal. Let | : | =O7'| : |. Then (Yi,...,
Y, X,

Y,) is a real Gaussian random vector with the diagonal covariance
matrix D. Then

n

E<Xi1 o Xlk) = Z Oi1j1Oiggp " ** OikjkEO/;d Y Y;k)
jl 7777 jkzl
= Z Oirjr * " " Oigj Z E 117 SR )
G1rndn=1 reP (k)
= Y E(Xi,....X,)
weP2 (k)

O

Since both sides of equation (1) are k-linear we can extend by lin-
earity to the complex case.
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Corollary 2. Suppose (Xi,...,X,) is a complex Gaussian random
vector then

B(X;, X)) = Y E«(Xi,...,X;,)
TI'GPQ(IC)

Gaussian Random Matrices. Let X be an N x N matrix with
entries f;; where fi; = x;; + V-1 Yy;; is a complex Gaussian random
variable such that

i) {ij};5; U{vij}ss; 1s independent

i) B(fi;) =0, B(If5°) = &
Then X is a self-adjoint Gaussian random matrix. Such a random

matrix is often called a GUE random matrix (GUE = Gaussian unitary
ensemble).

Exercise 5. Let X be an N x N GUE random matrix, with entries
fij =T = \/—_1y” normalized so that E(|f2]’2) =1.
i) Consider the random N2-vector (Z11, ..., TNN,T12, - -+, TIN, - - -
IN_1N,Y12,- - YN—1,n). Show that the density of this vector
is ce”3 TG X where dX = 1Y, deii I]
constant c.
i1) Evaluate the constant c.

A genus expansion for the GUE. Let us calculate E(Tr(X*%)), for
X a N x N GUE random matrix. We first suppose for convenience
that the entries of X have been normalized so that E(|f;;|*) = 1. Now

i<i dx;;dy;;, for some

N
E(Te(X*) = > E(fuisfuris fivir)-

U1tk =1

By Wick’s formula E(fi,i, fiyis - - firiy) = 0 whenever & is odd. So let

us evaluate

E(fi1i2fi2i3 T fi%il) = Z Eﬂ'(f’il’i27 fi2i3> ) figkh)

wEP2(2k)
Now E(fii, .1 fisie,,) Will be O unless i, = 4511 and 45 = 4,41 (us-
ing the convention that iopr; = 41). If 4, = i1 and iy = 4,4

then E(f’irir+1 fisis+1) = E(}firiw—l ‘2) = 1. Thus given (7,-1, Ce ,’igk),
E(fivio fisis - - - figeir) Will be the number of pairings 7 of [2k] such that
for each pair (r,s) of 7, i, = 1511 and i5 = 4,41.

In order to easily count these we introduce the following notation.
We regard the 2k-tuple (iy,...,is) as a function ¢ : [2k] — [N]. A
pairing m = {(r1, $1)(re, $2), ..., (g, s)} of [2k] will be regarded as a
permutation of [2k] by letting (r;, s;) be the transposition that switches
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r; with s; and 7 = (r1,$1) - -+ (g, sk) as the product of these transpo-
sitions. We also let 79 be the permutation of [2k] which has the one
cycle (1,2,3,...,2k). With this notation our condition on the pairings
has a simple expression. Let m be a pairing of [2k] and (r, s) be a pair
of m. The condition i, = is,11 can be written as i(r) = i(yor(7(r)))
since m(r) = s and o (7(r)) = s+ 1. Thus E;(firiss fivis - s fiogin)
will be 1 if 7 is constant on the orbits of 9,7 and 0 otherwise. Thus

N
2k _ o 1 is constant on the
B(TR(X™) = Z » {776732(214:) ‘ ibite b }
U1,y 02k=

_ Z " {z - [2k] — [N] ‘ i is constant on the}

orbits of o7

TeP2(2k)

Now let m and v be any two permutations of [n] and suppose that
the group generated by m and v acts transitively on [n], then by a
theorem of Alain Jacques (1968) and Robert Cori (1969) there is a
positive integer g such that #(7) +# (77 'y) +#(v) = n+2(1—g), and
¢ is the minimal genus of a surface upon which a ‘graph’ of 7 relative
to v can be embedded.

Example 3. v = (1,2,3,4,5,6), m = (1,4)(2,5)(3,6), #(7) = 3,
#(7) =1, #(n7ly) =2, #(m) + #(W 19) + #(y) = 6, -9 = 1
Conclusion: for a pairing 7 of [2k]
o #(m 'y) =k +1—2g for some g >0,
o #(rm~'y) < k + 1 with equality only when g = 0 i.e. when the
graph is planar.

Now change the normalization of X so E(|f;;|?) = ~, and let tr =
%Tr. Then
E(tr(XQk)) — N-Gk+D Z N#(2xm)
TEP2(2k)
@ e

mEP2(2k)

because #(m1v) = #(y7~!) in general and if 7 is a pairing T = 771

Thus ¢, = limy_.. E(tr(X?*)) is the number of non-crossing pairings
of [2k], i.e. the cardinality of |[NCy(2k)|, which is the k-th Catalan



FREE PROBABILITY AND RANDOM MATRICES 7

number k_Jlrl(2kk) i is also the 2k moment of the semi-circle law:
U et (07 )
cx = —/ V4 — 24t
2m ), -2-1 1 2

This is Wigner’s famous semi-circle law, which says that the spectral
measures of { Xy}, relative to the state E(tr(-)), converge to V‘;—;Tdt
i.e. the expected proportion of eigenvalues of X between a and b is
asymptotically f; %dt. If we regard X : Q@ — My(C) we can say
something stronger. On the complement of a set of probability 0, the
same result holds for X (w).

Asymptotic Freeness of Independent GUE’s. Suppose that for
each N we have Xi,..., X, are independent N x N GUE’s. For nota-
tional simplicity we suppress the dependence on N. Suppose my, ...,
m,. are positive integers and iy,4s,...,4, € [s| such that i1 # iy,iy #
i3,...,0,—1 7 i,. Consider the random matrix (which depends on N)

Y = (X" — e D)(X]? —empd) - (X[ — e, 1)

Each factor is centred asymptotically and adjacent factors involve in-
dependent matrices. We shall show that E(tr(Y)) — 0 and we shall call
this property asymptotic freeness. This will then motivate Voiculecu’s
definition of freeness.

First let us recall the principle of inclusion-exclusion (Da Silva, 1853).
Let S be a set and Fy,...,E,. CS. Then

IS\ (EyU---UE) =S| =) |E|+ > |EyNEy|+-
i+1 11712
3 (=D B N NE 44 (<) [Ein- N E|

Lyeenlk
distinct

for example, |S'\ (E1 U Es)| = |S| — (|E1| + |Es|) + |E1 N Ey.
We can rewrite the right hand side of (3) as

S\ (E1U---UE)| = > (=)™E,N--NE,|
MCr]
M={i1,..im}
- SN
MC[r] ieM

provided we make the convention that [,y E; = S and (—1)P = 1.
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Notation 4. Let i1, ...,%, € [s]. We regard these labels as the colours
of the matrices X;,, X,,,...,X;, . Given a pairing m € Py(m), we say
that 7 respects the colours i= (41, ..,%m), Or to be brief: 7 respects
i, if 4, = is whenever (7, s) is a pair of w. Thus 7 respects ¢ if and only
if 7 only connects matrices of the same colour.

Lemma 5. Suppose iy, ..., i, C [s] are positive integers. Then

E(tr(X;, -+ X;,)) = HW € NCy(m) | m respects ZH + O(N™?)
Proof.
E(tr(X;, -~ Xi,.))

PIRC

-----

= Z D Belfih o £

J1y--sJm TEP2(M)

= 2 D E )

TEP2(m) JiyesJm
T respects ¢

by:(2) Z ]\/'—297r

TEP2(m)
T respects ¢

= |{m € NCy(m) | w respects i}| + O(N~?)
U
Theorem 6. ]f@l 7é ig,ig 7é Z.3, c. ;ir—l 7é ir then th E(tl‘(Y)) = 0.

Proof. Let let Iy = {1,....,mq}, I = {my + 1,...,my + ma},
Li={mi+--+me_q+1,....m +---+m}.

E(tr((X]" —cp L) - (X{" = e, 1))

= > v [ en|e(a(IT X))

MClr] ieM jgM

= z:(—l)‘M| [ H le] {m € NCy(UjgnmI;) | 7 respects i}|
MC[r] ieM
+O(N?)

Let S = {m € NCy(m) | 7 respects i} and E; = {m € S | elements
of I; are only paired amongst themselves }. Then

‘ ﬂ Ej‘ = [ H Cm]-:| ‘{TF € NCy(Ujgnml;) | m respects z}’

jeM jeEM



FREE PROBABILITY AND RANDOM MATRICES 9

Thus
B(tr(X] =y D) -+ (X[ =, 1)) = Y (=DM () Bj|+O0(N7?)

MClr] JjEM
So we must show that ZMQ[T](—I)W'} Njenm E;| = 0. However by
inclusion-exclusion this sum equals |S'\ (Ey U --- U E,.)|. Now S\ (E;U
-+« U F,) is the set of pairings of [m| respecting i such that at least one
element of each interval is connected to another interval. However this
set is empty because elements of |S \ (E; U --- U E,)| must connect
each interval to at least one other interval in a non-crossing way and

thus form a non-crossing partition of the intervals {1y, ..., I.} without
singletons, in which no pair of adjacent intervals are in the same block,
and this is impossible. 0

Asymptotic Freeness. For each N let Ay, be the polynomials in
Xn,; with complex coeflicients. Let Ay be the algebra generated by
.ANJ, . 7AN,s- For A € .AN let (bN(A) = E(tr(A)) Thus ANJ, ey
An s are unital subalgebras of the unital algebra Ay with state ¢y.
We have just shown that if we have a positive integer r such that for
each N and each An;,..., An, € An such that

o limy ¢n(An;) =0fori=1,2,...,r

o Ay, € Ay, fori=1,2,...)r

O J1 7 Jos Jo F Js - Jr—1 7 Jr
then limy ¢y (An1ANn2 -+ An,) = 0. We thus say that the subalgebras
An1, ..., Ans are asymptotically free because, in the limit as N tends
to infinity, they satisfy the freeness property of Voiculescu.

Freeness. Let (A, ¢) be a unital algebra with a state. Suppose A, ...,
A, are unital subalgebras. We say that A, ... A, are freely independent
with respect to ¢ (or just free) if whenever we have a4, ..., a, € A such
that

o ¢(a;))=0fori=1,...,r

oa € Aj fori=1,...,r

O J1 # JosJo F J3s- -0 Jr—1 F Jr
we must have ¢(a; - --a,) = 0.



