
LECTURE 5: ASYMPTOTIC FREENESS OF RANDOM
MATRICES

We consider further the relationship between random matrices and
free probability. A “random matrix” is really a measurable function

(1) A : (Ω1, B1, µ1) → (Ω2, B2, µ2)

between two probability spaces, where the underlying set of the target
space is a set of matrices usually over some field (in our case it is always
C). Then each entry eij ◦ A is a C-valued random variable. Thus we
can think of a random matrix as a matrix whose entries are random
variables.

Let AN be a GUE(N) random matrix. Let us recall what this means.
Let

(2) AN : (Ω, B, µ) → HN

be a Hermitian matrix-valued measurable function defined on a clas-
sical probability space (HN is homeomorphic to the Euclidean space
CN(N−1)/2 so the measure on HN is just the pushforward of a Borel
measure on Euclidean space under this homeomorphism). Then each
entry of AN is a complex-valued random variable hij, and hji = hij

for i 6= j while hii = hii thus implying that hii is in fact a real-valued
random variable. AN is said to be GUE-distributed if each hij with
i < j is of the form

(3) hij = xij +
√
−1yij,

where xij , yij, 1 ≤ i < j ≤ N are independent standard Gaussian ran-
dom variables, each with mean 0 and variance 1

2N
. This determines the

below-diagonal entries also. Moreover, the GUE requirement means
that the diagaonal entries hii are real-valued independent Gaussian
random variables which are also independent from the xij ’s and the
yij’s and have mean 0 and variance 1

N
.

Let tr be the normalized trace linear functional on the full N × N
matrix algebra over C. Then tr(AN ) is a random variable. In Lecture
1 we saw the proof of Wigner’s semicircle law:

lim
N→∞

E[tr(An
N)] =

1

n + 1

(

2n

n

)

.
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In the language we have developed, this means that

AN → s as N → ∞,

where the convergence is in distribution and s is a semicircular element
living in some non-commutative probability space.

We also saw Voiculescu’s remarkable generalization of Wigner’s semi-

circle law: if A
(1)
N , . . . , A

(p)
N are p independent GUE random matrices

(meaning that if we collect the real and imaginary parts of the above
diagonal entries together with the diagonal entries we get a family of
independent real Gaussians with mean 0 and variances as explained
above), then

A
(1)
N , . . . , A

(p)
N → s1, . . . , sp as N → ∞,

where s1, . . . , sp is a family of freely independent semicircular elements.
This amounts to proving that

lim
N→∞

E[tr(A
(i(1))
N . . . A

(i(p))
N ] = φ(si(1) . . . si(p)).

Recall that since s1, . . . , sp are free their mixed cumulants will vanish,
and only the second cumulants of the form κ2(si, si) will be non-zero.

The above two statements are “in distribution,” i.e. with respect to
the averaged trace E[tr(·)] which gives the empirical eigenvalue distri-
bution. However they also hold in the sense of almost sure convergence,
i.e. for all points ω in the underlying probability space except for a set
of measure 0.

The following pictures provide numerical simulations of random ma-
trices and show the difference between “convergence of averaged eigen-
value distribution” and “almost sure convergence”.
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Convergence of averaged eigenvalue distribution of N × N
Gaussian random matrices to Wigner’s semicircle

(number of realizations in each case: 10,000)
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Almost sure convergence to Wigner’s semicircle.

three different realizations:
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We have asymptotic freeness of two independent Gaussian random
matrices AN , BN :

AN , BN
distr−→ s1, s2,

where s1, s2 are free semicircular elements.
This means, for example, that

lim
N→∞

tr(ANANBNBNANBNBNAN) = ϕ(s1s1s2s2s1s2s2s1)

We have ϕ(s1s1s2s2s1s2s2s1) = 2, since there are two non-crossing
pairings which respect the color:

s1 s1 s2 s2 s1 s2 s2 s1

and

s1 s1 s2 s2 s1 s2 s2 s1

Here are numerical simulations for two independent Gaussian ran-
dom matrices for

tr(ANANBNBNANBNBNAN)

one realization averaged over 1000 realizations
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Consider Wishart random matrix A = XX∗, where X is N ×M
random matrix with independent Gaussian entries.
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Its eigenvalue distribution converges almost surely towards

Marchenko-Pastur distribution.
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1. Products of Free Random Variables

Let {a1, . . . , ar} and {b1, . . . , br} be free random variables, and con-
sider

φ(a1b1a2b2 . . . arbr) =
∑

π∈NC(2r)

κπ[a1, b1, a2, b2, . . . , ar, br].

Since the a’s are free from the b’s, we only need to sum over those
partitions π which do not connect the a’s with the b’s. Each such
partition may be written as π = πa ∪ πb, where πa denotes the blocks
consisting of a’s and πb the blocks consisting of b’s. Hence by the
definition of free cumulants

φ(a1b1a2b2 . . . arbr) =
∑

πa∪πb∈NC(2r)

κπa
[a1, . . . , ar]κπb

[b1, . . . , br]

=
∑

πa∈NC(r)

κπa
[a1, . . . , ar]

(

∑

πb∈NC(r)
πa∪πb∈NC(2r)

κπb
[b1, . . . , br]

)

.

Now, the summation condition on the internal sum is equivalent to
the condition πb ≤ K(πa), where K denotes the Kreweras complement
(which is an order-reversing bijection) on the lattice NC(r). Thus in
particular we can write

φ(a1b1a2b2 . . . arbr) =
∑

π∈NC(2r)

κπ[a1, . . . , ar] · φK(π)[b1, . . . , br].

and in a similar way

φ(a1b1a2b2 . . . arbr) =
∑

π∈NC(2r)

φK−1(π)[a1, . . . , ar] · κπ[b1, . . . , br].

Note that K2 is not the identity, but a cyclic rotation of π.
These formulas are particularly useful when one of the sets of vari-

ables has simple cumulants, as is the case for semicircular random
variables (where only the second order cumulants are non-vanishing,
i.e. the sum is effectively only over non-crossing pairings).

2. Asymptotic Freeness Between Gaussian and Constant

Random Matrices

Consider a sequence (AN )N≥1 of random matrices with AN a GUE(N)
random matrix. Also let (DN)N≥1 be a sequence of constant (i.e., non-
random) matrices with DN ∈ CN×N . Assume that

(4) lim
N→∞

tr(Dm
N )
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exists for all m ≥ 1. Then we have

(5) AN → s and DN → d as N → ∞,

where s, d live in some non-commutative probability space. What is
the relation between s and d?

In order to answer this question we need to find the limiting mixed
moments

(6) lim
N→∞

E[tr(D
q(1)
N AND

q(2)
N . . .D

q(m)
N AN)]

for all m ≥ 1 where q(k) can be 0. In the calculation let us suppress
the dependence on N to reduce the number of indices, and write

(7) Dq = (dq
ij)

N
i,j=1 and A = (aij)

N
i,j=1.

The Wick formula allows us to calculate mixed moments in the entries
of A :

(8) E[ai(1)j(1)ai(2)j(2) . . . ai(m)j(m)] =
∑

π∈P2(m)

∏

(r,s)∈π

E[ai(r)j(r)ai(s)j(s)]

where

(9) E[aijakl] = δilδjk
1

N
.

Thus we have

E[tr(D
q(1)
N AND

q(2)
N . . .D

q(m)
N AN)] =

=
1

N

∑

i,j∈[N ][m]

E[d
q(1)
j(1)i(1)ai(1)j(2)d

q(2)
j(2)i(2)ai(2)j(3) . . . d

q(m)
j(m)i(m)ai(m)j(1)]

=
1

N

∑

i,j∈[N ][m]

E[ai(1)j(2)ai(2)j(3) . . . ai(m)j(1)]d
q(1)
j(1)i(1) . . . d

q(m)
j(m)i(m)

=
1

N1+m/2

∑

π∈P2(m)

∑

i,j∈[N ][m]

m
∏

r=1

δi(r)j(γπ(r))d
q(1)
j(1)i(1) . . . d

q(m)
j(m)i(m)

=
1

N1+m/2

∑

π∈P2(m)

∑

i,j∈[N ][m]

d
q(1)
j(1)j(γπ(1)) . . . d

q(m)
j(m)j(γπ(m))

=
∑

π∈P2(m)

N ](γπ)−1−m/2 trγπ[Dq(1), . . . , Dq(m)].

In the above calculation, we regard a pairing π ∈ P2(m) as a product
of disjoint transpositions in S(m) (i.e. an involution). Also γ ∈ S(m)
denotes the “long cycle” γ = (1, 2, . . . , m) and ](σ) is the number
of cycles in the factorization of σ ∈ S(m) as a product of disjoint
cycles. tr is the normalized trace, as always, and we have extended it
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multiplicatively as a functional on non-crossing partitions. For example
if σ = (1, 3, 6)(4)(2, 5) ∈ S(6) then

Trσ[D(1), D(2), D(3), D(4), D(5), D(6)] = N3 tr(D(1)D(3)D(6)) tr(D(4)) tr(D(2)D(5)).

Now since

lim
N→∞

N ](γπ)−1−m/2 =

{

1 if π ∈ NC2(m)

0 otherwise

we have that

lim
N→∞

E[tr(D
q(1)
N AND

q(2)
N . . .D

q(m)
N AN )] =

∑

π∈NC2(m)

φγπ[dq(1), . . . , dq(m)].

Now compare this to the formula for d, s free with s semicircular:

φ[dq(1)sdq(2)s . . . dq(m)s] =
∑

π∈NC2(m)

φK−1(π)[d
q(1), . . . , dq(m)].

The two are the same provided K−1(π) = γπ where K is the Krew-
eras complement. But this is true for all π ∈ NC2(m). Consider for
example π = {1, 10} ∪ {2, 3} ∪ {4, 7} ∪ {5, 6} ∪ {8, 9} ∈ NC2(10). Re-
gard this as the involution π = (1, 10)(2, 3)(4, 7)(5, 6)(8, 9) ∈ S(10).
γπ = (1)(2, 4, 8, 10)(3)(5, 7)(6)(9) which is exactly K−1(π).

Hence we have the following theorem.

Theorem: Let A
(1)
N , . . . , A

(p)
N be p independent GUE(N) random

matrices and let D
(1)
N , . . . , D

(q)
N be q constant non-random matrices such

that
D

(1)
N , . . . , D

(q)
N → d1, . . . , dq as N → ∞.

Then

A
(1)
N , . . . , A

(p)
N , D

(1)
N , . . . , D

(q)
N → s1, . . . , sp, d1, . . . , dp as N → ∞

where each si is semicircular and s1, . . . , sp, {d1, . . . , dp} are free. That

is, A
(1)
N , . . . , A

(p)
N , {D(1)

N , . . . , D
(q)
N } are asymptotically free.

3. Asymptotic Freeness Between Haar Unitary Random

Matrices and Constant Matrices

Let U(N) ⊂ CN×N denote the group of unitary matrices, i.e. N ×N
complex matrices which satisfy U∗U = UU∗ = IN . Since U(N) is a
compact group, one can take dU to be Haar measure on U(N) nor-
malized so that

∫

U(N)
dU = 1, which gives a probability measure on

N . A “Haar unitary” is a matrix UN chosen at random from U(N)
with respect to Haar measure. There is a useful theoretical and prac-
tical way to construct Haar unitaries: take an N × N random matrix
whose entries are independent standard complex Gaussians and apply



10 LECTURE 5: ASYMPTOTIC FREENESS OF RANDOM MATRICES

the Gram-Schmidt orthogonalization procedure; the resulting matrix
is then a Haar unitary.

What is the ∗-distribution of a Haar unitary with respect to the
state φ = E ◦ tr? Since U∗

NUN = IN = UNU∗
N , the ∗-distribution

is determined by the sequences φ(Um
N ) for m ∈ Z. Note that for any

complex number λ ∈ C with |λ| = 1, λUn is again a Haar unitary.
Thus, φ(λmUm

N ) = φ(Um
N ) for all m ∈ Z. This implies that we must

have φ(Um
N ) = 0 for m 6= 0.

Definition: Let (A, φ)) be a non-commutative probability space
with A a unital ∗-algebra. u ∈ A is called a Haar unitary if

• u is unitary, i.e. u∗u = 1A = uu∗;
• φ(uk) = δ0,k for k ∈ Z.

Thus a Haar unitary random matrix UN ∈ U(N) is a Haar unitary
for each N ≥ 1 (with φ = E ◦ tr).

We want to see that asymptotic freeness occurs between Haar unitary
random matrices and constant non-random matrices, as was the case
with GUE random matrices. The crucial element in the Gaussian
setting was the Wick formula, which of course does not apply when
dealing with Haar unitary random matrices whose entries are neither
independent nor Gaussian. However, we do have a replacement for
the Wick formula in this context, which is known as the “Weingarten
convolution formula.”

Let i, j, k, l ∈ [N ][n] be functions. The Weingarten convolution for-
mula asserts the existence of a sequence of functions (WgN)∞N=1 with
each WgN a function from permutations to complex numbers which
satisfies

E[ui(1)j(1) . . . ui(n)j(n)uk(1)l(1) . . . uk(n)l(n)] =

∑

σ,τ∈S(n)

n
∏

r=1

δi(r)k(σ(r))δj(r)l(τ(r)) WgN (τσ−1)

as well as the asymptotic growth condition

WgN(π) ∼ 1

N2n−](π)
as N → ∞

for any π ∈ S(n). Here the u’s are the entries of a Haar unitary UN .
The precise definition of the Weingarten function is quite complicated
and uneccessary for our purposes; we only need the convolution formula
and the asymptotic estimate. This allows us to prove the following.

Theorem: Let U
(1)
N , . . . , U

(p)
N be p independent Haar unitary random

matrices, and let D
(1)
N , . . . , D

(q)
N be q constant non-random matrices
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such that
D

(1)
N , . . . , D

(q)
N → d1, . . . , dq as N → ∞.

Then

U
(1)
N , . . . , U

(p)
N , D

(1)
N , . . . , D

(q)
N → u1, . . . , up, d1, . . . , dq as N → ∞

where each ui is a Haar unitary and u1, . . . , up, {d1, . . . , dq} are free.
The proof proceeds in a similar fashion as in the Gaussian setting.
Note that in general if u is a Haar unitary living in a non-commutative

probability space which is ∗-free from elements {a, b}, then a and ubu∗

are free. In order to prove this, consider

φ(p1(a)q1(ubu∗) . . . pr(a)qr(ubu∗))

where pi, qi are polynomials such that

φ(pi(a)) = 0 = φ(qi(ubu∗)).

Note that by the unitary condition we have qi(ubu∗) = uqi(b)u
∗. Thus

0 = φ((qi(ubu∗)) = φ(uqi(b)u
∗) = φ(uu∗)φ(q(b)) = φ(q(b)).

Hence

φ(p1(a)q1(ubu∗) . . . pr(a)qr(ubu∗)) =

φ(p1(a)uq1(b)u
∗p2(a) · · ·pr(a)uqr(b)u

∗) = 0

since u is ∗-free from {a, b} and φ(u) = φ(u∗) = 0.
Thus our Theorem from above yields also the following as a corollary.
Theorem: Let AN and BN be two sequences of constant N × N

matrices with AN → a and BN → b. Let UN be a sequence of Haar
unitary random matrices. Then

AN , UNBNU∗
N → a, b

where a and b are free.
Conjugation by a Haar unitary random matrix corresponds to a “ran-

dom rotation” (i.e. U(N) is the autmorphism group of the Euclidean
space CN .) Thus the above theorem says that randomly rotated con-
stant matrices become asymptotically free in the limit of large matrix
dimension.

The following pictures show how the machinery of free probability
can be used to calculate asymptotic eigenvalue distributions of some
random matrices.
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Recall that we have the following theorem.
Theorem [Voiculescu 1986, Speicher 1994]:

Put

G(z) =
1

z
+

∞
∑

m=1

ϕ(Am)

zm+1
Cauchy transform

and

R(z) =

∞
∑

m=1

κmzm−1
R-transform

Then we have
1

G(z)
+ R(G(z)) = z.

Let A and B be free. Then one has

RA+B(z) = RA(z) + RB(z),

or equivalently

κA+B
m = κA

m + κB
m ∀m.

This, together with the Stieltjes inversion formula, gives an effec-
tive algorithm for calculating free convolutions, i.e., the asymptotic
eigenvalue distribution of sums of random matrices in generic po-
sition:

A  GA
 RA

↓

RA +RB = RA+B
 GA+B

 A + B

↑
B  GB

 RB
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Consider A + UBU∗, where U is Haar random matrix and A and B
are diagonal matrices, each with N/2 eigenvalues 0 and N/2 eigenvalues
1/2

Thus the asymptotic eigenvalue distribution of the sum should be the
same as the distribution of the sum of two free Bernoulli distributions,
i.e., an arc-sine distribution

Here are corresponding simulations for random matrices; the first is
averaged over the ensemble, the second is for one realization.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

 N=64
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

... one realization ...

trials=5000 N=2048
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Consider now independent Wigner and Wishart matrices. They are
in generic position, thus asymptotically free.

So the asymptotic eigenvalue distribution of the sum of Wigner +
Wishart should be given by the distribution of the sum of a free semi-
circle and Marchenko-Pastur

Here are three different realizations of such random matrices:

−2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

N=M=5
−2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N=M=10
−2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N=M=100
−2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N=M=1000

−2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

N=M=5

−2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N=M=10
−2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N=M=100
−2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N=M=1000

−2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

N=M=5
−2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N=M=10
−2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N=M=100
−2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N=M=1000
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Wigner(3000) + Wishart(3000,3000)

−2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N=M=3000
−2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N=M=3000
−2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N=M=3000

Example: Wigner + Wishart (M = 2N)

−2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

averaged Wigner + Wishart; N=100
−2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

... one realization ...

trials=4000 N=3000
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One has similar analytic description for product.
Theorem [Voiculescu 1987, Haagerup 1997, Nica +

Speicher 1997]:
Put

MA(z) :=
∞

∑

m=0

ϕ(Am)zm

and define

SA(z) :=
1 + z

z
M<−1>

A (z) S-transform of A

Then: If A and B are free, we have

SAB(z) = SA(z) · SB(z).

Consider two independent Wishart matrices. They are in generic
position, thus asymptotically free.

So the asymptotic eigenvalue distribution of their product should be
given by the distribution of the product of two free Marchenko-Pastur
distributions.

Example: Wishart x Wishart (M = 5N)

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

averaged Wishart x Wishart; N=100
0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

... one realization ...

trials=10000 N=2000


