
LECTURE 3: FREE CENTRAL LIMIT THEOREM AND
FREE CUMULANTS

Recall from Lecture 2 that if (A, φ) is a non-commutative proba-
bility space and A1, . . . , An are subalgebras of A which are free with
respect to φ, then freeness gives us in principle a rule by which we can
evaluate φ(a1a2 . . . ak) for any alternating word in random variables
a1, a2, . . . , ak. Thus we can in principle calculate all mixed moments
for a system of free random variables. However, we do not yet have
any concrete idea of the structure of this factorization rule. This situ-
ation will be greatly clarified by the introduction of “free cumulants.”
Classical cumulants appeared in Lecture 1, where we saw that they are
intimately connected with the combinatorial notion of set partitions.
Our free cumulants will be linked in a similar way to the lattice of
non-crossing set partitions. We will motivate the appearance of free
cumulants and non-crossing partition lattices in free probability the-
ory by examining in detail a proof of the central limit theorem by the
method of moments.

1. The Classical and Free Central Limit Theorems

Our setting is that of a non-commutative probability space (A, φ) and
a sequence (ai)i∈N ⊂ A of centred and identically distributed random
variables. This means that φ(ai) = 0 for all i ≥ 1, and that and φ(an

i ) =
φ(an

j ) for any i, j, n ≥ 1. We assume that our random variables ai, i ≥ 1
are either classically independent, or freely independent as defined in
Lecture 2. Either form of independence gives us a “factorization rule”
for calculating mixed moments in the random variables.

For k ≥ 1, set

(1) Sk :=
1√
k
(a1 + · · ·+ ak).

The Central Limit Theorem is a statement about the limit distribu-
tion of the random variable Sk in the large k limit.

Definition 1. Let (Ak, φk), k ∈ N and (A, φ) be noncommutative
probability spaces. Let (bk)k∈N be a sequence of random variables with
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2 FREE CLT AND FREE CUMULANTS

bk ∈ Ak, and let b ∈ A. We say that the sequence (bk)k∈N converges in

distribution to b, notated by bk
distr−→ b, if

(2) lim
k→∞

φk(b
n
k) = φ(bn)

for any fixed n ∈ N.

We want to make a statement about convergence in distribution of
the random variables (Sk)k∈N (which all come from the same underlying
n.c. probability space). Thus we need to do a moment calculation. Let
[k] = {1, . . . , k} and [n] = {1, . . . , n} and denote by [k][n] the set of all
functions r : [n] → [k].

φ(Sn
k ) =

1

kn/2

∑
r∈[k][n]

φ(ar(1) . . . ar(n)).

It will be convenient to think of our state φ and the first k random
variables a1, . . . , ak as defining a functional φ̂ : [k][n] → C by

φ̂(r) := φ(ar(1) . . . ar(n)).

Thus what our moment calculation amounts to is summing the possible
values of this functional.

φ(Sn
k ) =

1

kn/2

∑
r∈[k][n]

φ̂(r).

It turns out that the fact that the random variables a1, . . . , ak are
independent and identically distributed makes this task less complex
than it initially appears.

The idea of encoding a function r ∈ [k][n] by its ordered sequence
of fibres was popularized by Gian-Carlo Rota in a series of lectures on
the so-called twelvefold way in enumerative combinatorics. The simple
idea is that a function r ∈ [k][n] is equivalent to the data of the ordered
k-tuple

(F1, . . . , Fk),

where Fi = r−1({i}) is the fibre of r over i ∈ [k]. In general, an or-
dered k-tuple of disjoint subsets of [n] whose union is [n] and some of
which might be empty is called a “k-part set composition” of [n]. The
collection of k-part set compositions of n is denoted Ck(n).

Example 1.1. Consider the function r ∈ [4][6] defined by

(3) r(1) = 1, r(2) = 2, r(3) = 1, r(4) = 1, r(5) = 2, r(6) = 3.

Then r is encoded by the set composition

(4) ({1, 3, 4}, {2, 5}, {6}, ∅).
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So, if we regard φ̂ as a functional on Ck(n), then what we want to
do is compute

φ(Sn
k ) =

1

kn/2

∑
(F1,...,Fk)∈Ck(n)

φ̂(F1, . . . , Fk).

From the point of view of set compositions, there is a very natural
action of the symmetric group S(k) on Ck(n); permutations should act
simply by permuting parts. That is for σ ∈ S(k) and (F1, . . . , Fk) ∈
Ck(n) we define

σ · (F1, . . . , Fk) := (Fσ(1), . . . , Fσ(k)).

For any (F1, . . . , Fk) its orbit and stabilizer under the action of
S(k) are defined to be

O(F1, . . . , Fk) := {(Fσ(1), . . . , Fσ(k)) : σ ∈ S(k)}
S(F1, . . . , Fk) := {σ ∈ S(k) : (Fσ(1), . . . , Fσ(k)) = (F1, . . . , Fk)}.

Orbits are either disjoint or identical. Let Ck(n)/S(k) denote the

set of distinct orbits arising from the group action. The fact that φ̂
is defined in terms of independent and identically distributed random
variables a1, . . . , ak allows us to “lift” φ̂ to a function on Ck(n)/S(k).

Lemma 1. For any composition (F1, F2, . . . , Fk) ∈ C(k)(n), φ̂ is con-
stant on O(F1, F2, . . . , Fk).

Proof. The statement is that for any (F1, F2, . . . , Fk) ∈ C(k)(n) and any
permutation σ ∈ S(k) we have

φ̂(F1, F2, . . . , Fk) = φ̂(Fσ(1), Fσ(2), . . . , Fσ(k)).

We know that the random variables a1, . . . , ak are independent. This
means that we have a factorization rule for calculating mixed moments
in a1, . . . , ak in terms of the moments of individual ai’s. In particular
this means that φ̂(F1, F2, . . . , Fk) can be written as some expression in

moments φ(aj
i ), while φ̂(Fσ(1), Fσ(2), . . . , Fσ(k)) can be written as that

same expression except with φ(aj
i ) replaced by φ(aj

σ(i)). However, since

our random variables all have the same distribution, then φ(aj
i ) =

φ(aj
σ(i)) for any i, j. Thus the lemma is proved. �

Consequently, we have

φ(Sn
k ) =

1

kn/2

∑
O∈Ck(n)/S(k)

φ̂(O) · |O|.
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It is not difficult to find |O|. For any (F1, . . . , Fk) ∈ Ck(n), we know
from the orbit-stabilizer theorem that

|O(F1, . . . , Fk)| · |S(F1, . . . , Fk)| = |S(k)|.
Note that the only way that a permutation can stabilize a composition
is by permuting its parts which are equal to the emptyset ∅. Thus, if
p(F1, . . . , Fk) is the number of parts of (F1, . . . , Fk) which are not equal
to the emptyset, we have from the orbit-stabilizer theorem that

|O(F1, . . . , Fk)| =
k!

(k − p(F1, . . . , Fk))!
.

Hence

φ(Sn
k ) =

1

kn/2

∑
O∈Ck(n)/S(k)

φ̂(O) · k(k − 1) . . . (k − p(O) + 1).

Now, an orbit O ∈ Ck(n)/S(k) is equivalent to the data of an un-
ordered collection of disjoint non-empty subsets of [n] whose union is
[n], in other words a partition of [n]. This is because if {V1, . . . , Vs} is
a partition of [n] with s ≤ k, we can construct a corresponding orbit
by forming the composition

(V1, . . . , Vs, Vs+1, . . . , Vk),

where Vs+1, . . . , Vs are instances of ∅, and permuting its parts in all
possible ways. Thus there is a one-to-one correspondence between
Ck(n)/S(k) and the set of partitions of [n] which have at most k blocks
(the sets that make up a partition π = {V1, . . . , Vs} are called blocks).
Let P(n) denote the collection of all partitions π of [n], and define

κ(π) = κ({V1, . . . , V|π|}) =

{
φ̂(O(V1, . . . , V|π|, ∅, · · · ∅)), if |π| ≤ k

0, if |π| > k

where |π| denotes the number of blocks of π. Then what we have proved
is that

φ(Sn
k ) =

1

kn/2

∑
π∈P(n)

κ(π) · k(k − 1) . . . (k − |π|+ 1).

The great advantage of this expression over what we started with
is that the number of terms does not depend on k. Thus we are in a
position to take the k →∞ limit, provided we can effectively estimate
each term of the sum.

Our first observation is the most obvious one, namely we have

(5) k(k − 1) . . . (k − |π|+ 1) ∼ k|π|

for k →∞.



FREE CLT AND FREE CUMULANTS 5

654321

Figure 1. Visualizing the set partition {1, 3, 4} ∪ {2, 5} ∪ {6}.

Next observe that if π has a block of size 1, then we will have κ(π) =
0. Indeed suppose that π = {V1, . . . , Vm, . . . , Vs} ∈ P([n]) with Vm =
{j} for some j ∈ [n]. Then we will have

(6) κ(π) = φ(a1 . . . aj−1ajaj+1 . . . an)

where aj 6∈ {a1, . . . , aj−1, aj+1, . . . , an}. Hence we can write

(7) κ(π) = φ(bajc),

where b = a1 . . . aj−1 and c = aj+1 . . . an and thus

(8) φ(bajc) = φ(aj)φ(bc) = 0,

since aj is (classically or freely) independent of {b, c}.
Thus the only partitions which contribute to the sum are those with

blocks of size at least 2. Note that such a partition can have at most
n/2 blocks. Now,

(9) lim
k→∞

k|π|

kn/2
=

{
1, if |π| = n/2

0, if |π| < n/2.

Hence the only partitions which contribute to the sum in the k → ∞
limit are those with exactly n/2 blocks, i.e. partitions each of whose
blocks has size 2. Such partitions are called “pairings,” and the set of
pairings is denoted P2(n).

Thus we have shown that

(10) lim
k→∞

φ(Sn
k ) =

∑
π∈P2(n)

κ(π).

Note that in particular if n is odd then P2(n) = ∅, so that the odd limit-
ing moments vanish. In order to determine the even limiting moments,
we must distinguish between the setting of classical independence and
free independence.

In the case of classical independence, our random variables com-
mute and factorize completely with respect to φ. Thus if we denote by
φ(a2

i ) = σ2 the common variance of our random variables, then for any
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pairing π ∈ P2(n) we have κ(π) = σn. Thus we have

lim
k→∞

φ(Sn
k ) =

∑
π∈P2(n)

κ(π)

= σn|P2(n)|

=

{
σn(n− 1)(n− 3) . . . 5 · 3 · 1, if n even

0, if n odd
.

From Lecture 1, we recognize these as exactly the moments of a Gauss-
ian random variable of mean 0 and variance σ2. Hence we get the
classical central limit theorem: If (ai)i∈N are classically independent
random variables which are identically distributed with φ(ai) = 0 and
φ(a2

i ) = σ2, then Sk converges in distribution to a Gaussian random
variable with mean 0 and variance σ2.

We should note that the notion of “convergence in distribution” is a
priori weaker than the usual notion of “weak convergence” or “conver-
gence in law” considered in probability theory. However, these notions
coincide in the case that the distribution of the limit random variable
is determined by its moments (i.e. it is the unique distribution with
those moments). This is well-known to be the case for the Gaussian
distribution.

Now we want to deal with the case where the random variables are
freely independent. In this case, κ(π) will not be the same for all pair
partitions π ∈ P2(2n) (we focus on the even moments now because we
already know that the odd ones are zero). Let’s take a look at some
examples:

κ(12|34) = φ(a1a1a2a2) = φ(a1)
2φ(a2)

2 = σ4

κ(14|23) = φ(a1a2a2a1) = φ(a1)
2φ(a2)

2 = σ4

κ(13|24) = φ(a1a2a1a2) = 0.

(Here we are using a shorthand notation for partitions, e.g. 12|34 =
{{1, 2}, {3, 4}}). In general, we will get κ(π) = σ2n if we can find suc-
cessively neighbouring pairs of identical random variables in any word
in the random variables corresponding to π; if we cannot we will have
κ(π) = 0. Geometrically, one sees that the type of pair partitions that
give a non-zero contribution are the ones that have the geometric prop-
erty that they are non-crossing (see the next section). Let NC2(2n)
denote the set of non-crossing pair partitions. Then we have as our
central limit theorem that

lim
k→∞

φ(S2n
k ) = σ2n|NC2(2n)|.
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There are many ways to determine the cardinality Cn := |NC2(2n)|; to
give it away, the answer turns out to be the ubiquitous Catalan num-
bers which appear in many seemingly unrelated contexts throughout
mathematics.

Our first method for counting non-crossing pairings is to find a simple
recurrence which they satisfy. The idea is to look at the block of a
pairing which contains the number 1. In order for the pairing to be
non-crossing, i must be paired with some even number in the set [2n],
else we would necessarily have a crossing. Thus 1 must be paired with
2i for some i ∈ [n]. Now let i run through all possible values in [n], and
count for each the number of non-crossing pairings that contain this
block, as in the diagram below.

1 2 2i 2n

Figure 2. We have Ci−1 possibilities for inside the
block, and Cn−i possibilities for outside the block.

In this way we see that the cardinality Cn of NC2(2n) must satisfy
the recurrence relation

(11) Cn =
n∑

i=1

Ci−1Cn−i,

with initial condition C0 = 1. One can then check directly that the
Catalan numbers satisfy this recurrence, hence Cn = 1

n+1

(
2n
n

)
.

We can also prove directly that Cn = 1
n+1

(
2n
n

)
by finding a bijection

between NC2(2n) and some standard set of objects which we can see
directly is enumerated by the Catalan numbers. A reasonable choice for
this “canonical” set is the collection of 2×n Standard Young Tableaux.
Suppose that we have a 2 × n grid of squares. A Standard Young
Tableaux of shape 2×n is just a filling of the squares of the grid with the
numbers 1, . . . , 2n which is strictly increasing in each of the 2 rows and
each of the n columns. The number of these Standard Young Tableaux
is very easy to calculate, using a famous and fundamental result known
as the “Hook-Length Formula.” The Hook-Length formula tells us that
the number of Standard Young Tableaux on the 2× n rectangle is

(12)
(2n)!

(n + 1)!n!
=

1

n + 1

(
2n

n

)
.

Thus we will have proved that |NC2(2n)| = 1
n+1

(
2n
n

)
if we can bijec-

tively associate to each pair partition π ∈ NC2(2n) a Standard Young
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Tableaux on the 2×n rectangular grid. This is very easy to do. Simply
take the “left-halves” of each pair in π and write them in increasing
order in the cells of the first row. Then take the “right-halves” of each
pair of π and write them in increasing order in the cells of the sec-
ond row. Figure 2 shows the bijection between NC2(6) and Standard
Young Tableaux on the 2× 3 rectangle.

2 3 4 5 6 1 3 4

2 5 6

1 2 3 4 5 6 1 2 4

3 5 6

1

1 2 3 4 5 6 1 3 5

2 4 6

1 2 3 4 5 6

1 2 5

3 4 6

1 2 3 4 5 6 1 2 3

4 5 6

Figure 3. Bijection between P2(n) and 2× n Standard
Young Tableaux.

Definition 2. A random variable s with odd moments φ(s2n+1) = 0 and
even moments φ(s2n) = σ2nCn where Cn is the n-th Catalan number
and σ > 0 is a constant is called a semicircular element of variance
σ2.
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Thus we have the “Free Central Limit Theorem:”

Theorem 1. If (an)n∈N are freely independent and identically dis-
tributed with φ(ai) = 0 and φ(a2

i ) = σ2, then Sk converges in dis-
tribution to a semicircular element of variance σ2 as k →∞.

Recall that in Lecture 1 it was shown that for a random matrix XN

chosen from GUE(N) we have that

(13) lim
N→∞

E[tr(Xn)] =

{
0, if n odd

Cn/2, if n even

so that a GUE random matrix is a semicircular element in the limit of
large matrix dimension.

We can also define a family of semicircular random variables.

Definition 3. (si)i∈I is called a semicircular family of covariance
(cij)i,j∈I if for any n ≥ 1 and any n-tuple i(1), . . . , i(n) ∈ I we have

φ(si(1) . . . si(n)) =
∑

π∈NC2(2n)

κπ[si(1), . . . , si(n)],

where
κπ[si(1), . . . , si(n)] =

∏
(p,q)∈π

ci(p)i(q).

This is the free analogue of Wick’s formula for Gaussian random
variables.

In fact, using this language, it was shown in Lecture 1 that if X1, . . . , Xr

are matrices chosen independently from GUE(N), then they converge
in distribution in the large N limit to a semicircular family s1, . . . , sr

of covariance cij = δij.

2. Non-Crossing Partitions and Free Cumulants

We begin by repeating the definition of a partition, which was given
in Section 1.

Definition 4. A partition of [n] = {1, . . . , n} is an unordered collection
π = {V1, . . . , Vr} of disjoint, non-empty subsets of [n] whose union is
[n].

The Vi’s are called the blocks of π, and P(n) = P([n]) denotes the
collection of all partitions of [n].

Definition 5. A partition π ∈ P(n) is called non-crossing if there do
not exist numbers p1, q1, p2, q2 ∈ [n] with p1 < q1 < p2 < q2 such that:
p1 and p2 are in the same block of π, q1 and q2 are in the same block
of π, and p1, q1 are not in the same block of π.
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The diagram below should make it clear what a “crossing” in a par-
tition is; a non-crossing partition is a partition with no crossings.

****** q_2p_2q_1p_1

Figure 4. A crossing in a partition

Definition 6. The collection of all non-crossing partitions of [n] is
denoted NC(n).

Note that P(n) is partially ordered by

(14) π1 ≤ π2 : ⇐⇒ each block of π1 is contained in a block of π2.

We also say that π1 is a refinement of π2. NC(n) is a subset of P(n)
and inherits this partial order, so NC(n) is an induced sub-poset of
P(n). In fact both are lattices; they have well defined maximum ∨ and
minimum ∧ operations (though the max of two non-crossing partitions
in NC(n) does not necessarily agree with their max when viewed as
elements of P(n)).

We now define the important free cumulants of a non-commutative
probability space (A, φ).

Definition 7. Let (A, φ) be a noncommutative probability space. The
corresponding free cumulants

(15) κn : An → C, n ≥ 1

are defined inductively in terms of mixed moments by

(16) φ(a1 . . . an) =
∑

π∈NC(n)

κπ(a1, . . . , an),

where by definition if π = {V1, . . . , Vr} then

(17) κπ(a1, . . . , an) =
r∏

i=1

κ|Vi|((ai)i∈Vi
)).

Example 2.1. For n = 1, we have

(18) φ(a1) = κ1(a1) =⇒ κ1(a1) = φ(a1).
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Example 2.2. For n = 2, we have
(19)
φ(a1a2) = κ{1,2}(a1, a2) + κ{1}∪{2}(a1, a2) = κ2(a1, a2) + κ1(a1)κ1(a2).

Since we know from the n = 1 calculation that κ1(a1) = φ(a1), this
yields

(20) κ2(a1, a2) = φ(a1a2)− φ(a1)φ(a2).

Example 2.3. For n = 3, we have

φ(a1a2a3) = κ{1,2,3}(a1, a2, a3) + κ{1,2}∪{3}(a1, a2, a3)
(21)

+ κ{1}∪{2,3}(a1, a2, a3) + κ{1,3}∪{2}(a1, a2, a3) + κ{1}∪{2}∪{3}(a1, a2, a3)
(22)

= κ3(a1, a2, a3) + κ2(a1, a2)κ1(a3) + κ2(a2, a3)κ1(a1)
(23)

+ κ2(a1, a3)κ1(a2) + κ1(a1)κ1(a2)κ1(a3).
(24)

Thus we find that
(25)
κ3(a1, a2, a3) = φ(a1a2a3)−φ(a1)φ(a2a3)−φ(a2)φ(a1a3)−φ(a3)φ(a1a2)+2φ(a1)φ(a2)φ(a3).

These three examples outline the general procedure of recursively
defining κn in terms of mixed moments of length n.

Let us also point out how the definition looks for a1 = · · · = an = a,
i.e. when all random variables are the same. Then we have

(26) φ(an) =
∑

π∈NC(n)

κπ(a, . . . , a).

Thus if we write αn := φ(an) and κa
π := κπ(a, . . . , a) this reads

αn =
∑

π∈NC(n)

κa
π,

which we call the moment-cumulant formula.
The following are some important and non-trivial properties of free

cumulants:

(1) κn is an n-linear function.
(2) There exists a combinatorial formula for dealing with cumu-

lants whose arguments are products of random variables. For
example, consider the evaluation of κ2(a1a2, a3). It turns out
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that this can be evaluated as

κ2(a1a2, a3) =
∑

π∈{123,1|23,13|2}

κπ

= κ3(a1, a2, a3) + κ1(a1)κ2(a2, a3) + κ2(a1, a3)κ1(a2).

In general, the evaluation of a free cumulant of the form

κn(

m1∏
i=1

a1i, . . . ,
mn∏
i=1

ani)

involves summing κπ(a1i, . . . , a1m1 , . . . , an1, . . . , anmn) over all
π ∈ NC(m1 + · · · + mn) which have the property that they
connect all different product strings.

Perhaps the most important property of free cumulants is that their
vanishing in special situations characterizes free independence:

Theorem 2. Let (A, φ) be a non-commutative probability space and
let κn, n ≥ 1 be the corresponding free cumulants. Then, subalgebras
A1, . . . , As ⊂ A are free if and only if all “mixed” cumulants with
entries from A1, . . . , An vanish. That is, A1, . . . , An are free if and
only if: whenever we choose aj ∈ Ai(j) in such a way that i(k) 6= i(l)
for some k, l ∈ [n], then

κn(a1, . . . , an) = 0.

The proof of this theorem on freeness and the vanishing of mixed
cumulants relies on a key lemma, which we now describe.

Proposition 2.1. Let (A, φ) be a non-commutative probability space
and let (κn)n∈N be the corresponding free cumulants. For n ≥ 2,
κn(a1, . . . , an) = 0 if 1 ∈ {a, . . . , an}.

Proof. We consider the case where the last argument an is equal to 1,
and proceed by induction on n.

For n = 2,
κ2(a, 1) = φ(a1)− φ(a)φ(1) = 0.

So the base step is done.
Now assume for the induction hypothesis that the result is true for

all k < n. We have that

φ(a1 . . . an−11) =
∑

π∈NC(n)

κπ(a1, . . . , an−1, 1)

= κn(a1, . . . , an−1, 1) +
∑

π∈NC(n)
π 6=[n]

κπ(a1, . . . , an−1, 1).
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According to our induction hypothesis, a partition π 6= [n] can have
κπ(a1, . . . , an−1, 1) different from zero only if {n} is a one-element block
of π, i.e. π = σ ∪ {n} for some σ ∈ NC(n − 1). For such a partition
we have

κπ(a1, . . . , an−1, 1) = κσ(a1, . . . , an−1)κ1(1) = κσ(a1, . . . , an−1),

hence

φ(a1 . . . an−11) = κn(a1, . . . , an−1, 1) +
∑

σ∈NC(n−1)

κσ(a1, . . . , an−1)

= κn(a1, . . . , an−1, 1) + φ(a1 . . . an−1).

Since φ(a1 . . . an−11) = φ(a1 . . . an−1), we have proved that κn(a1, . . . , an−1, 1) =
0. �

Notice how much more efficient the result on the description of free-
ness in terms of cumulants is in checking freeness of random variables
than the original definition of free independence. In the cumulant
framework, we can forget about centerdness and weaken “alternat-
ing” to “mixed.” Also, the problem of adding two freely indepen-
dent random variables becomes easy on the level of free cumulants. If
a, b ∈ (A, φ) are free with respect to φ, then

κa+b
n := κn(a + b, . . . , a + b)

= κn(a, . . . , a) + κn(b, . . . , b) + (mixed cumulants in a, b)

= κa
n + κb

n.

Thus the problem of calculating moments is shifted to the relation
between cumulants and moments. We already know that the moments
are polynomials in the cumulants, i.e. we know

αn =
∑

π∈NC(n)

κπ,

but we want to put this relationship into a framework more amenable
to performing calculations.

For any a ∈ A, let us consider formal power series in an indeterminate
z defined by

M(z) = 1 +
∞∑

n=1

αnz
n, moment series

C(z) = 1 +
∞∑

n=1

κa
nz

n, cumulant series.
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We want to translate the moment-cumulant formula

αn =
∑

π∈NC(n)

κa
π

into a statement about the relationship between the moment and cu-
mulant series.

Proposition 2.2.
M(z) = C(zM(z)).

Proof. The trick is to sum first over the possibilities for the block of
π containing 1, as in the derivation of the recurrence for Cn. Suppose
that the first block of π looks like

V = {1, v2, . . . , vs}
where 1 < v1 < · · · < vs ≤ n. Then we build up the rest of the
partition π out of smaller “nested” non-crossing partitions π′1, . . . , π

′
s

with π′1 ∈ NC({2, . . . , v2 − 1}), π′2 ∈ NC({v2 + 1, . . . , v3 − 1}), etc.
Hence if we denote i1 = |{2, . . . , v2 − 1}|, i2 = |{v2 + 1, . . . , v3 − 1}|,
etc., then we have

αn =
n∑

s=1

∑
i1,...,is≥0

s+i1+···+is=n

∑
π=V ∪π′

1∪···∪π′
s

κsκπ′
1
. . . κπ′

s

=
n∑

s=1

∑
i1,...,is≥0

s+i1+···+is=n

∑
π=V ∪π′

1∪···∪π′
s

κs

( ∑
π′
1∈NC(i1)

κ′1

)
. . .

( ∑
π′

s∈NC(is)

κ′s

)

=
n∑

s=1

∑
i1,...,is≥0

s+i1+···+is=n

κsαi1 . . . αis .

Thus we have

1 +
∞∑

n=1

αnz
n = 1 +

∞∑
n=1

n∑
s=1

∑
i1,...,is≥0

s+i1+···+is=n

κsz
sαi1z

i1 . . . αisz
is

= 1 +
∞∑

s=1

κsz
s

( ∞∑
i=0

αiz
i

)s

.

�

Now consider the Cauchy transform of a :

G(z) := φ(
1

z − a
) =

∞∑
n=0

φ(a)

zn+1
=

1

z
M(

1

z
)
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and the R-transform of a defined by

R(z) :=
C(z)− 1

z
=

∞∑
n=0

κa
n+1z

n.

Also put K(z) = R(z) + 1
z

= C(z)
z

. Then we have the relations

K(G(z)) =
1

G(z)
C(G(z)) =

1

G(z)
C(

1

z
M(

1

z
)) =

1

G(z)
z(G(z)) = z.

Thus we have the following theorem of Voiculescu on “free convolu-
tion:”

Theorem 3. For a random variable a let Ga(z) be its Cauchy trans-
form and define its R-transform by

(27) G[R(z) +
1

z
] = z.

Then, for a and b freely independent, we have

(28) Ra+b(z) = Ra(z) + Rb(z).

At the moment these are idenitites on the level of formal power series,
i.e. identities in the ring C[[z]]. In the next lecture, we will elaborate
on their interpretation as identities concerning analytic functions.


