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1. Direct and inverse problems of additive
and combinatorial number theory

Additive number theory is the study of sums
of sets and we can distinguish two main lines
of research.

In a direct problem of additive number theory
we start with a particular known set A and at-
tempt to determine the structure and proper-
ties of the h-folds sumset hA. These are the
classical direct problems in additive number
theory: Waring's problem, Goldbach conjec-
ture...

As a counterbalance to this direct approach,
an inverse problem in additive number theory
IS a problem in which we study properties of
a set A, if some characteristic of the h-fold
sumset hA is given.




Sumsets can be defined in any Abelian group
G, for example in

o 7/
the group of integers,

o 7/m1
the group of congruence classes modulo m,

o /"
the group of integer lattice points,

o RY
the d-dimensional Euclidean space.



Freiman proposed an unifying *“algorithm’ for
solving inverse additive problems:

e Step 1. Consider some (usually numerical)
characteristic of the set under study.

e Step 2. Find an extremal value of this
characteristic within the framework of the
problem that we are studying.

e Step 3. Study the structure of the set
when its characteristic is equal to its ex-
tremal value.

e Step 4. Study the structure of the set
when its characteristic is near to its ex-
tremal value.

e Step 5. ....Continue, taking larger and larger
neighborhoods for the characteristic.



et us choose as characteristic the cardinality
of the sumset:

2K = K + K,
or equivalently the “measure of doubling” .
_ IK+ K]
O — .
| K|

We will examine in detail the exact structure
of a finite set

K C G,
in the case of a torsion free Abelian group
G=7" or G=R%

assuming that the doubling constant is small.

REMARK: If o is an arbitrary doubling con-
stant, then Freiman’s fundamental result (1966)
asserts that such a set is a large subset of
a multidimensional arithmetic progression; see
also Freiman (1987), Bilu (1993), Ruzsa (1994),
Nathanson (1996), or Tao and Vu (2006).
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2. Small doubling property on the plane
ZQ

Let us describe some results concerning the
structure of planar sets with small sumset.

We begin with the following basic inequality:

Theorem 1 (Freiman 1966). If K C Z2 lies on
exactly s > 2 parallel lines, then

KAKI> (4= DK =25 +12 3k -3 (1)

Moreover, using Freiman’s 3k — 4 theorem we
easily conclude that a planar set of lattice points
KK C 72 with

K+ K| <3|K| -3

lies on a straight line and is contained in an
arithmetic progression of no more than

v=|K+K|—-|K|+1
terms. Step 2 is completely solved.



Therefore, a natural problem is to concentrate
on the study of Steps 3 and 4.

We ask for the structure of a finite planar set
of lattice points with small doubling | 4 K.
AS one can expect, this question is easier to
answer when the cardinality |+ K| is close to
its minimal possible value 3|K|—3, and becomes
much more complicated if we choose bigger
values for [ 4+ K|. To be more specific, we
may ask the following

Problem.
Find the exact structure of planar sets of lat-
tice points under the doubling hypothesis:

2
K+ Kl < (4- S_I_—l)VCI —(2s+1).



Let us examine the first case s = 2.

Though, the Freiman’'s (2" — ¢) theorem gives
a first indication on the structure of K, still
this is not so precise as the following

Theorem 2 (Freiman 1966, S. 1998). Let K C
72 be a finite of dimension dim K = 2.

(i) K| > 11 and |[K+ K| < 22|K| -5 then K lies
on two parallel lines.

(ii) If IC lies on two parallel lines and
K+ K| < 4Kl -6

then IC is included in two parallel arithmetic
progressions with the same common having to-
gether no more than v = |2K|—-2k+3 terms.

This means that the total number of holes sat-
isfies

h < [2K| — (3k — 3).



FIGURE:



The following theorem incorporates Freiman’s
previous result as a particular case:

Theorem 3 (S. 1998). Let K be a finite set
of 72 and s > 1 be a natural number. If |K| is
sufficiently large, i.e. k > O(s3), and

2
K+K< (4= —=Z)KI-(s+1D) . @)

then there exist s parallel lines which cover the
set IC.

This is a best possible result, because it cannot
be improved by increasing the upper bound for
I+ K|, or by reducing the number of lines that
cover IC.
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EXAMPLE: ...
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The theorem is effective and recently Serra and
Grynkiewicz obtained an explicit value for the
constant kg(s) = 2s2 + s+ 1. They also suc-
ceeded to extend the result for sums of differ-
ent sets A+ B :

Theorem 4 (Grynkiewicz and Serra 2007). Let
A, B C R? be finite subsets and s > 1 be a
natural nhumbetr.

0 If‘|A| _ |B|‘ < s+ 1A+ |B| > 452+ 25+ 1
and

1
A+ B| < (2- S_I_—l)(IAI +[B[) — (25 + 1)

then there exist 2s (not necessarily distinct)
parallel lines which cover the sets A and B.

(i) If |[A| > |B| + s,|B| > 2s® + & and

2
A+ B <|Al+B——)|B|—(s+1)
s+ 1

then there exist 2s (not necessarily distinct)
parallel lines which cover the sets A and B.
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The next natural question is to consider a finite
set K of lattice points on a plane having the
small doubling property

2
2K] < (4 — S_|_—1)|’C| —(2s+1)

and ask for a reasonable estimate for the num-
ber of lattice points of a "minimal’ parallelo-
gram that covers the set K.

More precisely, if £ is a lattice generated by
IC, we are interested in precise upper bounds
for the number of points of £ that lie in the
convex hull of IC. Our main result asserts that
KC is located inside a parallelogram that lies on
a few lines which are well filled:
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Theorem 5 (S. 2007). Let s > 19 be an inte-
ger and let K be a finite subset of 72 that lies
on exactly s parallel lines. If

2
2K| < (4 — 8_|_—1)|’C| — (2s+ 1),

then there is a lattice L C 72 and a parallelo-
gram ‘P such that

KC(PNL)+w
and

P L)< 24(]K + K] - 2IK] + 1),

for some v € Z2.

Conjecture. We believe that for a best possi-
ble result, the constant factor 24 of Theorem
5 should be replaced by 5(1+ -17), i.e.

PAL|<

2(8_1)(|/c+/c|—2|m|+25—1).

So far inequality this estimate has been proved
only for s = 2 (Freiman 1966) and s = 3 (S.
1999).
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3. Planar sets with no three collinear points
on a line

Let A C Z2 be a finite set, not containing any
three collinear points. Freiman asked in 1966
for a lower bound for | A+ A|. As a first step
in the investigation of this problem we showed

that |“L|\j|“4‘ is unbounded, as lim|A| = oo:

Theorem 6 (S.2002). Let A C Z? be a finite
set of n lattice points. If A does not contain
any three collinear points, then there is a pos-
itive absolute constant § > O such that

A+ Al > n(logn)°. (3)

The constant 6 can be easily computed: for
instance, any positive § smaller than 0.125 will
do.
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There is an intimate connection between two
seemingly unrelated problems:

(i) non-averaging sets of integers of ordet ¢
and

(ii) planar sets with no three points on a line.

Definition. A finite set of integers B C Z is
called a non-averaging set of order t, if for ev-
ery 1 <m,n <t the equation

mXq1 +nXo = (m 4+ n)Xs,

have no nontrivial solutions with X; € B.

Let
st(n)

be the maximal cardinality of a non-averaging
set of order t included in the interval [1,n].
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It is clear that a non-averaging set of order 1 is
simply an integer set containing no arithmetic
progressions. Bourgain's bound for Roth’s the-
orem gives:

si(n) < s1(n) = r3(n) < ———(log logn)Z.
(logn)2

Remark. We also obtained a more exact in-
equality, valid for sets A C Z2 containing no
k—terms arithmetic progressions: for every in-
teger t > 1 we have

1

1 N \zz
At Al 2 S (- 5)" (4)
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We formulate the following:

Problem S. Suppose thatt > 1 is a fixed,
positive, but rather large integer. Is it true that

si(n) < W, or at least s;(n) < W, for

a positive absolute constant ¢ > %?

Note that Freiman’'s question asks for a non
trivial lower estimate of | A+ A| for a set A C
7,2 containing no three collinear points and in
Problem S we want to estimate the density
of a sequence of natural numbers B, assuming
that t linear equations does not hold for B.
Inequality (4) shows that any upper bound for
s¢(n), better than the trivial one r3(n) will lead
to a corresponding sharpening of (3) and (4).
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As regards lower bounds, we have:

Theorem 7 (S. 2002).

(i) For every t > 1, there is a positive constant
c;t such that for every n one has

st(n) > nexp(—civ/logn).

(ii) There is no eg > 0 such that the inequality

A+ Al > | AL Teo

holds for every finite set A C 72 containing no
three collinear points.

The proof uses Freiman's fundamental con-
cept of isomorphism, Behrend’'s method and a
result of Ruzsa about sets of integers contain-
ing Nno non-trivial three term arithmetic pro-
gressions.

A recent improvement of the lower bound (3),
was obtained by T. Sanders (2006):

A+ Al > |A|(log |A])3 .
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4. The simplest inverse problem for sums
of sets In several dimensions

It is a well known fact that |A+B| > |A|4|B|—-1
for every two finite sets A and B of Z¢, equality
being attained when A and B are arithmetic
progressions with the same difference.

It is possible to obtain a much better estimate.
The first result connecting geometry and ad-
ditive properties is

Theorem 8 (Freiman 1966). For every finite
set A C 7Z¢ of affine dimension dim A = d, one
has

A+ A > [+ DIA - 2dd+1). (5)

This lower bound is tight, i.e. Step 2 is solved.

20



EXAMPLE:
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et us investigate now Step 3. What is the ex-
act structure of multi-dimensional sets having
the smallest cardinality of the sumset?

The following result is an analogue of the well
known Vosper's theorem (1956), Z/pZ being
here replaced by the d-dimensional space R4,

Theorem 9 (S. 1998). Let A C R" be a finite
set such that dimA > d and

1
A+ Al = (d+ DA - Jd(d +1).

If|A| # d+4, then A is a d-dimensional set and
A consists of d parallel arithmetic progressions
with the same common difference.

Moreover, if |A| = d + 4, then

A = {fuo, V1y eeny ’Ud} U {2’01, U1 ‘|‘ v, 2’02}7

where v; are the vertices of a d-dimensional
simplex.
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EXAMPLE:
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Further developments:

Ruzsa (1994): If |A| > |B| and dim(A+B) = d,
then

d(d 1
A+ B> 14 +dp - TFD.

Gardner and Gronchi (2001): If |A| > |B| and
dim(B) = d, then

A+ Bl >
d(d — 1)

> |A[+(d=1)| B+ (|4] - d)-1(|B] — d)—=—

Green and Tao (2006)
Suppose that A C R™ is a finite set which con-

tains a parallelepiped P = {0,1}¢ C 7¢ C R™.

Then
A+ Al > 292)4].
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5. Exact Structure Results for Multidi-
mensional Inverse Additive Problems

A natural question is to generalize Theorem 3
to the multidimensional case d = dim(K) > 3 :

Assume that the doubling coefficient of the
sum set 2/C is not much exceeding the minimal
one, i.e.

2K
d+1<oc=—F—<pg.
K]

What can be said about the exact structure of
K 7 The expected result is: if

1
pa=d+1+7

then the set K is contained in d "short” arith-
metical progressions.
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The problem was first solved for the first open
case d = 3.

Theorem 10 (S. 2005). Let K be a finite sub-
set of 73 of affine dimension dim K = 3.

(i) If |K| > 123 and

13 25
K+ Kl <—|K|——
K+ Kl < 1K - 2

then IC lies on three parallel lines.

(ii) If K lies on three parallel lines and

K + K| < 5|K| — 10,

then K is contained in three arithmetic pro-
gressions with the same common difference,
having together no more than

v=I|K+K|-3|K|+6
terms.
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The structure of K can be also be described
for sets of dimension d > 3

Theorem 11 (S. 2008). Let K C Z% be a finite
set of dimension d > 2.

(i) If k> 3-4% and
4
K+ K| < (d+§)|’C| — €4

where c; = £(3d? 4+ 5d + 8), then K lies on d
parallel lines.

(ii) If IC lies on d parallel lines and

K+ K] < (d+ 2] S(d+1)(d+2),

then K is contained in d parallel arithmetic pro-
gressions with the same common difference,
having together no more than

1
v=|K+ K| -d|K|+ 5d(d + 1) terms.
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T hese results are best possible and cannot be
sharpened by reducing the quantity v or by in-
creasing the upper bounds for | 4 K|.

EXAMPLES:
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We found that a similar inequality can be for-
mulated for d—dimensional sets that have a
. . . . 2
small doubling coefficient C; = d + 2 — P
(where s > d is a positive integer). In this case
we prove that K lies on no more than s parallel

lines.

T hese results can be used to make Freiman’s
Main T heorem more precise.

In a joint work with Freiman (2008) we study
the exact structure of d-dimensional sets sat-
isfying the small doubling property

2K| < (d+ 2 — ¢)|K].
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6. Difference Sets

We will present now some results on difference
sets in a d-dimensional Euclidean space. The
need for lower estimates for | A — A| in terms
of |.A| has been raised by Uhrin (1981), where
the trivial | A — A| > 2| A| — 1 is used to prove
theorems sharpening the classical theorem of
Minkowski-Blichfeldt in geometry of numbers.

It can be stated that the sharper estimation for
| A—A| we have, the sharper results in geometry
of numbers can be proved.

Let A C R be a finite set and (as Step 1
of Freiman’'s algorithm requires) we choose as
numerical characteristic the cardinality of the
difference set A — A.
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The following inequality is analogous to (5):

Theorem 12 (Freiman-Heppes-Uhrin 1989).
If dim A > 1, then

A— Al > (d+1)|A4] — %d(d +1).  (6)

This immediately vields that if

e d=1and ACR, then |[A—A| >2|A| -1
and if
e d=2and ACR? then |A— A| > 3|A| -3.

These two inequalities cannot be strengthened.
However, the lower bound (6) is not exact for
dimension d = 3.

Freiman-Heppes-Uhrin (1989) and Ruzsa (1994)
conjectured that the “correct” lower bound for
dimA=3is

A —A| >45|A -9 . (7)

This conjecture is correct and (7) is a best
possible lower bound for |A — A]|:
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Theorem 13 (S. 1998). Let A be a finite set
of R3 and let {e1,en,e3} be the standard basis
of R3.

(i) IfdimA=3, then |[A— Al > 4.5|A| -9 .

(ii) Equality is attained if and only if A is a
union of four parallel arithmetic progressions:
A= {Oa e1,€2,e1 + 62} + {Oa e3, 2€e3, ..., k€3}‘

For 2-dimensional sets the situation is similar:

Theorem 14 (S. 1998). Let D be a finite set
in R2 of affine dimension dimD = 2. Then
D — D| = 3|D| — 3, if and only if D consists
of two parallel arithmetic progressions with the
same number of elements and the same com-
mon difference.

This solves Steps 2 and 3 of Freiman’'s algo-
rithm: it gives the structure of 2 and 3 dimen-
sional sets having the smallest cardinality of
the difference set.
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et us give now a short description of the mul-
tidimensional case d > 4.

Let s; be the maximal positive number for
which the inequality

A —A| > sq| Al — t4

holds for every finite set A of affine dimension
dimA =d.

What can one say about s; 7
The exact value of s; is known only for d =1,
d=2 and d = 3 and Ruzsa conjectured

Conjecture. (Ruzsa, 1994) For every d > 4
we have

p
sq=2d-2+".
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EXAMPLES :
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The following upper bound for s, is true:

Theorem 15 (S. 2001). For every integer d,
d > 2 one has

1

T his readily disproves Ruzsa’s conjecture.

Moreover, in view of inequality (7) and Theo-
rem 15, it seems that the equality s; = 2d—2+
-2 is true for every d > 2. Thus, we suggest

the following:

Conjecture 16 (S. 2001). For every finite set
A of affine dimension dim A =d > 2, one has

A— Al > (2d—2—|—ﬁ)|/\| _(2d2 — 4d + 3).

Of course, in view of Theorem 15, if the above
inequality is true, then is best possible.
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EXAMPLES for dimension 2, 3 and 4...
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7. Finite Abelian groups

Similar questions can be asked for any group
G. A short and incomplete list of results for

G=F,,G=(Fy%G=17/nZ

will show that additive questions in finite abelian
groups are generally more difficult than analo-
gous problems in Z.

e Consider for the beginning sums of congru-
ence classes modulo a prime p. Take two finite
sets A and B in Fp and choose as characteristic
the cardinality of the sum

A4+ B={a+b:a€ Abec B}.

Then the solution of Step 2 is Cauchy-Davenport
theorem:

A+ B| > min{p, |A| + |B| — 1}.
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The answer to Step 3 is given by VVosper’s the-
orem (1956), which classify those pairs A, B
of sets of residues for which equality holds in
Cauchy-Davenport inequality.

The next natural question is to consider Step
4 and to analyze the case when the cardinality
of the sum is not much exceeding its extremal
value.

Freiman (1966), generalized Vosper’'s theorem
for sumsets of the form A+ A in Fp, by de-
scribing the structure of A in the case

2A| < ¢|A| — 3,

with ¢ < 2.4; either |A| is large or the set A is
located in a short arithmetic progression.

This has been recently extended to any c¢ by
Green and Ruzsa (2006), using the rectifica-
tion principle of Freiman and Bilu-Lev-Ruzsa
(1998).
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e For sumsets in vector spaces over finite fields,
Eliahou and Kervaire proved in (1998) that

Al

|A—|—B|2min{ ([ 1+[| 'l 1):O§t§d},

for every two sets A and B included in (Fp)%.
Step 2 is solved.

Deshouillers-Hennecart-Plagne gave in (2004)
an answer to Steps 3 and 4 by obtaining a
structure theorem under the assumption

ACFL A+ Al =clA,1<c< 4.

In this instance the set A is contained in a coset
a + H of order at most % where u(c) > 0 is
an explicit function depending only c.
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e Recently Step 5 was solved by Ruzsa and Green
(2008), not only for G = F¢, but also for com-
mutative torsion groups:

If A is a subset of a commutative group G of
exponent r and if

A+ A| < k|A],

then A is contained in a coset of a subspace
of size no more than

12 T2k2—2
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e Let (G is an arbitrary Abelian group.
Kneser (1953) gave a deep generalization of
Cauchy-Davenport’'s theorem:

Let A and B be two finite subsets of an Abelian
group G. One has

A+ B| > |Al + |B| — |H|,
where H is the stabilizer of A 4+ B.
Important results concerning the equality case

in Kneser's theorem are due to Kemperman
(1960) and Lev (1999).

In a step beyond Kneser’'s theorem, Deshouillers
and Freiman (2003) proved a structural result
for the cyclic group

G = Z/nZ

assuming that

A+ A| < 2.04|A]
and |A| sufficiently small.
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