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1. Direct and inverse problems of additive

and combinatorial number theory

Additive number theory is the study of sums

of sets and we can distinguish two main lines

of research.

In a direct problem of additive number theory

we start with a particular known set A and at-

tempt to determine the structure and proper-

ties of the h-folds sumset hA. These are the

classical direct problems in additive number

theory: Waring’s problem, Goldbach conjec-

ture...

As a counterbalance to this direct approach,

an inverse problem in additive number theory

is a problem in which we study properties of

a set A, if some characteristic of the h-fold

sumset hA is given.
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Sumsets can be defined in any Abelian group

G, for example in

• Z

the group of integers,

• Z/mZ

the group of congruence classes modulo m,

• Zn

the group of integer lattice points,

• Rd

the d-dimensional Euclidean space.
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Freiman proposed an unifying “algorithm” for

solving inverse additive problems:

• Step 1. Consider some (usually numerical)

characteristic of the set under study.

• Step 2. Find an extremal value of this

characteristic within the framework of the

problem that we are studying.

• Step 3. Study the structure of the set

when its characteristic is equal to its ex-

tremal value.

• Step 4. Study the structure of the set

when its characteristic is near to its ex-

tremal value.

• Step 5. ....Continue, taking larger and larger

neighborhoods for the characteristic.
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Let us choose as characteristic the cardinality

of the sumset:

2K = K + K,

or equivalently the “measure of doubling”:

σ =
|K + K|

|K|
.

We will examine in detail the exact structure

of a finite set

K ⊆ G,

in the case of a torsion free Abelian group

G = Z
n or G = R

d,

assuming that the doubling constant is small.

REMARK: If σ is an arbitrary doubling con-

stant, then Freiman’s fundamental result (1966)

asserts that such a set is a large subset of

a multidimensional arithmetic progression; see

also Freiman (1987), Bilu (1993), Ruzsa (1994),

Nathanson (1996), or Tao and Vu (2006).
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2. Small doubling property on the plane

Z
2

Let us describe some results concerning the

structure of planar sets with small sumset.

We begin with the following basic inequality:

Theorem 1 (Freiman 1966). If K ⊆ Z
2 lies on

exactly s ≥ 2 parallel lines, then

|K + K| ≥ (4 −
2

s
)|K| − 2s + 1 ≥ 3k − 3. (1)

Moreover, using Freiman’s 3k − 4 theorem we

easily conclude that a planar set of lattice points

K ⊆ Z2 with

|K + K| < 3|K| − 3

lies on a straight line and is contained in an

arithmetic progression of no more than

v = |K + K| − |K| + 1

terms. Step 2 is completely solved.
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Therefore, a natural problem is to concentrate

on the study of Steps 3 and 4.

We ask for the structure of a finite planar set

of lattice points with small doubling |K + K|.

As one can expect, this question is easier to

answer when the cardinality |K+K| is close to

its minimal possible value 3|K|−3, and becomes

much more complicated if we choose bigger

values for |K + K|. To be more specific, we

may ask the following

Problem.

Find the exact structure of planar sets of lat-

tice points under the doubling hypothesis:

|K + K| < (4 −
2

s + 1
)|K| − (2s + 1).
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Let us examine the first case s = 2.

Though, the Freiman’s (2n − ǫ) theorem gives

a first indication on the structure of K, still

this is not so precise as the following

Theorem 2 (Freiman 1966, S. 1998). Let K ⊆

Z
2 be a finite of dimension dimK = 2.

(i) |K| ≥ 11 and |K+K| < 10
3 |K| − 5 then K lies

on two parallel lines.

(ii) If K lies on two parallel lines and

|K + K| < 4|K| − 6

then K is included in two parallel arithmetic

progressions with the same common having to-

gether no more than v = |2K|−2k +3 terms.

This means that the total number of holes sat-

isfies

h ≤ |2K| − (3k − 3).
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FIGURE:
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The following theorem incorporates Freiman’s

previous result as a particular case:

Theorem 3 (S. 1998). Let K be a finite set

of Z2 and s ≥ 1 be a natural number. If |K| is

sufficiently large, i.e. k ≥ O(s3), and

|K + K| <

(

4 −
2

s + 1

)

|K| − (2s + 1) , (2)

then there exist s parallel lines which cover the

set K.

This is a best possible result, because it cannot

be improved by increasing the upper bound for

|K+K|, or by reducing the number of lines that

cover K.
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EXAMPLE: ...
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The theorem is effective and recently Serra and

Grynkiewicz obtained an explicit value for the

constant k0(s) = 2s2 + s + 1. They also suc-

ceeded to extend the result for sums of differ-

ent sets A + B :

Theorem 4 (Grynkiewicz and Serra 2007).Let

A,B ⊆ R2 be finite subsets and s ≥ 1 be a

natural number.

(i) If

∣

∣

∣

∣

|A| − |B|

∣

∣

∣

∣

≤ s + 1, |A|+ |B| ≥ 4s2 + 2s + 1

and

|A + B| < (2 −
1

s + 1
)(|A| + |B|) − (2s + 1)

then there exist 2s (not necessarily distinct)

parallel lines which cover the sets A and B.

(ii) If |A| > |B| + s, |B| ≥ 2s2 + s
2 and

|A + B| < |A| + (3 −
2

s + 1
)|B| − (s + 1)

then there exist 2s (not necessarily distinct)

parallel lines which cover the sets A and B.
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The next natural question is to consider a finite

set K of lattice points on a plane having the

small doubling property

|2K| < (4 −
2

s + 1
)|K| − (2s + 1)

and ask for a reasonable estimate for the num-

ber of lattice points of a ”minimal” parallelo-

gram that covers the set K.

More precisely, if L is a lattice generated by

K, we are interested in precise upper bounds

for the number of points of L that lie in the

convex hull of K. Our main result asserts that

K is located inside a parallelogram that lies on

a few lines which are well filled:
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Theorem 5 (S. 2007). Let s ≥ 19 be an inte-

ger and let K be a finite subset of Z2 that lies

on exactly s parallel lines. If

|2K| < (4 −
2

s + 1
)|K| − (2s + 1),

then there is a lattice L ⊆ Z2 and a parallelo-

gram P such that

K ⊆ (P ∩ L) + v

and

|P ∩ L| ≤ 24
(

|K + K| − 2|K| + 1
)

,

for some v ∈ Z
2.

Conjecture. We believe that for a best possi-

ble result, the constant factor 24 of Theorem

5 should be replaced by 1
2(1 + 1

s−1), i.e.

|P ∩ L| ≤
s

2(s − 1)

(

|K + K| − 2|K| + 2s − 1
)

.

So far inequality this estimate has been proved

only for s = 2 (Freiman 1966) and s = 3 (S.

1999).
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3. Planar sets with no three collinear points

on a line

Let A ⊆ Z2 be a finite set, not containing any

three collinear points. Freiman asked in 1966

for a lower bound for |A + A|. As a first step

in the investigation of this problem we showed

that
|A±A|
|A|

is unbounded, as lim |A| = ∞:

Theorem 6 (S.2002). Let A ⊆ Z
2 be a finite

set of n lattice points. If A does not contain

any three collinear points, then there is a pos-

itive absolute constant δ > 0 such that

|A ± A| ≫ n(logn)δ. (3)

The constant δ can be easily computed: for

instance, any positive δ smaller than 0.125 will

do.
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There is an intimate connection between two

seemingly unrelated problems:

(i) non-averaging sets of integers of ordet t

and

(ii) planar sets with no three points on a line.

Definition. A finite set of integers B ⊆ Z is

called a non-averaging set of order t, if for ev-

ery 1 ≤ m, n ≤ t the equation

mX1 + nX2 = (m + n)X3,

have no nontrivial solutions with Xi ∈ B.

Let

st(n)

be the maximal cardinality of a non-averaging

set of order t included in the interval [1, n].
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It is clear that a non-averaging set of order 1 is

simply an integer set containing no arithmetic

progressions. Bourgain’s bound for Roth’s the-

orem gives:

st(n) ≤ s1(n) = r3(n) ≪
n

(logn)
1
2

(log logn)
1
2.

Remark. We also obtained a more exact in-

equality, valid for sets A ⊆ Z2 containing no

k−terms arithmetic progressions: for every in-

teger t ≥ 1 we have

|A ± A| ≥
1

2
|A|

( n

st(n)

)
1
4t. (4)
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We formulate the following:

Problem S. Suppose that t ≥ 1 is a fixed,

positive, but rather large integer. Is it true that

st(n) ≪ n
(logn)4t, or at least st(n) ≪ n

(logn)c, for

a positive absolute constant c ≥ 1
2?

Note that Freiman’s question asks for a non

trivial lower estimate of |A + A| for a set A ⊆

Z
2 containing no three collinear points and in

Problem S we want to estimate the density

of a sequence of natural numbers B, assuming

that t linear equations does not hold for B.

Inequality (4) shows that any upper bound for

st(n), better than the trivial one r3(n) will lead

to a corresponding sharpening of (3) and (4).
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As regards lower bounds, we have:

Theorem 7 (S. 2002).

(i) For every t ≥ 1, there is a positive constant

ct such that for every n one has

st(n) ≥ n exp(−ct
√

logn).

(ii) There is no ǫ0 > 0 such that the inequality

|A + A| ≫ |A|1+ǫ0

holds for every finite set A ⊆ Z2 containing no

three collinear points.

The proof uses Freiman’s fundamental con-

cept of isomorphism, Behrend’s method and a

result of Ruzsa about sets of integers contain-

ing no non-trivial three term arithmetic pro-

gressions.

A recent improvement of the lower bound (3),

was obtained by T. Sanders (2006):

|A + A| ≫ǫ |A|(log |A|)
1
3−ǫ.
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4. The simplest inverse problem for sums

of sets in several dimensions

It is a well known fact that |A+B| ≥ |A|+|B|−1

for every two finite sets A and B of Zd, equality

being attained when A and B are arithmetic

progressions with the same difference.

It is possible to obtain a much better estimate.

The first result connecting geometry and ad-

ditive properties is

Theorem 8 (Freiman 1966). For every finite

set A ⊆ Zd of affine dimension dimA = d, one

has

|A + A| ≥ (d + 1)|A| −
1

2
d(d + 1). (5)

This lower bound is tight, i.e. Step 2 is solved.
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EXAMPLE:
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Let us investigate now Step 3. What is the ex-

act structure of multi-dimensional sets having

the smallest cardinality of the sumset?

The following result is an analogue of the well

known Vosper’s theorem (1956), Z/pZ being

here replaced by the d-dimensional space Rd.

Theorem 9 (S. 1998). Let A ⊆ Rn be a finite

set such that dimA ≥ d and

|A + A| = (d + 1)|A| −
1

2
d(d + 1).

If |A| 6= d+4, then A is a d-dimensional set and

A consists of d parallel arithmetic progressions

with the same common difference.

Moreover, if |A| = d + 4, then

A = {v0, v1, ..., vd} ∪ {2v1, v1 + v2,2v2},

where vi are the vertices of a d-dimensional

simplex.
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EXAMPLE:
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Further developments:

Ruzsa (1994): If |A| ≥ |B| and dim(A+B) = d,

then

|A + B| ≥ |A| + d|B| −
d(d + 1)

2
.

Gardner and Gronchi (2001): If |A| ≥ |B| and

dim(B) = d, then

|A + B| ≥

≥ |A|+(d−1)|B|+ d
√

(|A| − d)d−1(|B| − d)−
d(d − 1)

2

Green and Tao (2006)

Suppose that A ⊆ Rm is a finite set which con-

tains a parallelepiped P = {0,1}d ⊆ Zd ⊆ Rm.

Then

|A + A| ≥ 2d/2|A|.
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5. Exact Structure Results for Multidi-

mensional Inverse Additive Problems

A natural question is to generalize Theorem 3

to the multidimensional case d = dim(K) ≥ 3 :

Assume that the doubling coefficient of the

sum set 2K is not much exceeding the minimal

one, i.e.

d + 1 ≤ σ =
|2K|

|K|
< ρd.

What can be said about the exact structure of

K ? The expected result is: if

ρd = d + 1 +
1

3
,

then the set K is contained in d ”short” arith-

metical progressions.
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The problem was first solved for the first open

case d = 3:

Theorem 10 (S. 2005). Let K be a finite sub-

set of Z3 of affine dimension dimK = 3.

(i) If |K| > 123 and

|K + K| <
13

3
|K| −

25

3

then K lies on three parallel lines.

(ii) If K lies on three parallel lines and

|K + K| < 5|K| − 10,

then K is contained in three arithmetic pro-

gressions with the same common difference,

having together no more than

v = |K + K| − 3|K| + 6

terms.
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The structure of K can be also be described

for sets of dimension d ≥ 3 :

Theorem 11 (S. 2008). Let K ⊆ Zd be a finite

set of dimension d ≥ 2.

(i) If k > 3 · 4d and

|K + K| < (d +
4

3
)|K| − cd,

where cd = 1
6(3d2 + 5d + 8), then K lies on d

parallel lines.

(ii) If K lies on d parallel lines and

|K + K| < (d + 2)|K| −
1

2
(d + 1)(d + 2),

then K is contained in d parallel arithmetic pro-

gressions with the same common difference,

having together no more than

v = |K + K| − d|K| +
1

2
d(d + 1) terms.
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These results are best possible and cannot be

sharpened by reducing the quantity v or by in-

creasing the upper bounds for |K + K|.

EXAMPLES:
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We found that a similar inequality can be for-

mulated for d−dimensional sets that have a

small doubling coefficient Cd = d + 2 − 2
s−d+3

(where s ≥ d is a positive integer). In this case

we prove that K lies on no more than s parallel

lines.

These results can be used to make Freiman’s

Main Theorem more precise.

In a joint work with Freiman (2008) we study

the exact structure of d-dimensional sets sat-

isfying the small doubling property

|2K| < (d + 2 − ǫ)|K|.

29



6. Difference Sets

We will present now some results on difference

sets in a d-dimensional Euclidean space. The

need for lower estimates for |A − A| in terms

of |A| has been raised by Uhrin (1981), where

the trivial |A − A| ≥ 2|A| − 1 is used to prove

theorems sharpening the classical theorem of

Minkowski-Blichfeldt in geometry of numbers.

It can be stated that the sharper estimation for

|A−A| we have, the sharper results in geometry

of numbers can be proved.

Let A ⊆ Rd be a finite set and (as Step 1

of Freiman’s algorithm requires) we choose as

numerical characteristic the cardinality of the

difference set A−A.
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The following inequality is analogous to (5):

Theorem 12 (Freiman-Heppes-Uhrin 1989).

If dimA ≥ 1, then

|A − A| ≥ (d + 1)|A| −
1

2
d(d + 1). (6)

This immediately yields that if

• d = 1 and A ⊆ R, then |A − A| ≥ 2|A| − 1

and if

• d = 2 and A ⊆ R2, then |A − A| ≥ 3|A| − 3.

These two inequalities cannot be strengthened.

However, the lower bound (6) is not exact for

dimension d = 3.

Freiman-Heppes-Uhrin (1989) and Ruzsa (1994)

conjectured that the “correct” lower bound for

dimA = 3 is

|A − A| ≥ 4.5|A| − 9 . (7)

This conjecture is correct and (7) is a best

possible lower bound for |A − A| :
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Theorem 13 (S. 1998). Let A be a finite set

of R
3 and let {e1, e2, e3} be the standard basis

of R3.

(i) If dimA = 3, then |A − A| ≥ 4.5|A| − 9 .

(ii) Equality is attained if and only if A is a

union of four parallel arithmetic progressions:

A = {0, e1, e2, e1 + e2} + {0, e3,2e3, ..., ke3}.

For 2-dimensional sets the situation is similar:

Theorem 14 (S. 1998). Let D be a finite set

in R2 of affine dimension dimD = 2. Then

|D − D| = 3|D| − 3, if and only if D consists

of two parallel arithmetic progressions with the

same number of elements and the same com-

mon difference.

This solves Steps 2 and 3 of Freiman’s algo-

rithm: it gives the structure of 2 and 3 dimen-

sional sets having the smallest cardinality of

the difference set.
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Let us give now a short description of the mul-

tidimensional case d ≥ 4.

Let sd be the maximal positive number for

which the inequality

|A − A| ≥ sd|A| − td

holds for every finite set A of affine dimension

dimA = d.

What can one say about sd ?

The exact value of sd is known only for d = 1,

d = 2 and d = 3 and Ruzsa conjectured

Conjecture. (Ruzsa, 1994) For every d ≥ 4

we have

sd = 2d − 2 +
2

d
.
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EXAMPLES :
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The following upper bound for sd is true:

Theorem 15 (S. 2001). For every integer d,

d ≥ 2 one has

sd ≤ 2d − 2 +
1

d − 1
.

This readily disproves Ruzsa’s conjecture.

Moreover, in view of inequality (7) and Theo-

rem 15, it seems that the equality sd = 2d−2+
1

d−1 is true for every d ≥ 2. Thus, we suggest

the following:

Conjecture 16 (S. 2001). For every finite set

A of affine dimension dimA = d ≥ 2, one has

|A − A| ≥ (2d − 2 +
1

d − 1
)|A| − (2d2 − 4d + 3).

Of course, in view of Theorem 15, if the above

inequality is true, then is best possible.
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EXAMPLES for dimension 2, 3 and 4...
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7. Finite Abelian groups

Similar questions can be asked for any group

G. A short and incomplete list of results for

G = Fp, G = (F2)
d, G = Z/nZ

will show that additive questions in finite abelian

groups are generally more difficult than analo-

gous problems in Z.

• Consider for the beginning sums of congru-

ence classes modulo a prime p. Take two finite

sets A and B in Fp and choose as characteristic

the cardinality of the sum

A + B = {a + b : a ∈ A, b ∈ B}.

Then the solution of Step 2 is Cauchy-Davenport

theorem:

|A + B| ≥ min{p, |A| + |B| − 1}.
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The answer to Step 3 is given by Vosper’s the-

orem (1956), which classify those pairs A, B

of sets of residues for which equality holds in

Cauchy-Davenport inequality.

The next natural question is to consider Step

4 and to analyze the case when the cardinality

of the sum is not much exceeding its extremal

value.

Freiman (1966), generalized Vosper’s theorem

for sumsets of the form A + A in Fp, by de-

scribing the structure of A in the case

|2A| < c|A| − 3,

with c < 2.4; either |A| is large or the set A is

located in a short arithmetic progression.

This has been recently extended to any c by

Green and Ruzsa (2006), using the rectifica-

tion principle of Freiman and Bilu-Lev-Ruzsa

(1998).
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• For sumsets in vector spaces over finite fields,

Eliahou and Kervaire proved in (1998) that

|A+B| ≥ min

{

pt
(

⌈
|A|

pt
⌉+⌈

|B|

pt
⌉−1

)

: 0 ≤ t ≤ d

}

,

for every two sets A and B included in (Fp)d.

Step 2 is solved.

Deshouillers-Hennecart-Plagne gave in (2004)

an answer to Steps 3 and 4 by obtaining a

structure theorem under the assumption

A ⊆ F
d
2, |A + A| = c|A|,1 ≤ c < 4.

In this instance the set A is contained in a coset

a + H of order at most
|A|

u(c)
where u(c) > 0 is

an explicit function depending only c.
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• Recently Step 5 was solved by Ruzsa and Green

(2008), not only for G = F
d
p, but also for com-

mutative torsion groups:

If A is a subset of a commutative group G of

exponent r and if

|A + A| < k|A|,

then A is contained in a coset of a subspace

of size no more than

k2r2k2−2.
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• Let G is an arbitrary Abelian group.

Kneser (1953) gave a deep generalization of

Cauchy-Davenport’s theorem:

Let A and B be two finite subsets of an Abelian

group G. One has

|A + B| ≥ |A| + |B| − |H|,

where H is the stabilizer of A + B.

Important results concerning the equality case

in Kneser’s theorem are due to Kemperman

(1960) and Lev (1999).

In a step beyond Kneser’s theorem, Deshouillers

and Freiman (2003) proved a structural result

for the cyclic group

G = Z/nZ

assuming that

|A + A| < 2.04|A|

and |A| sufficiently small.
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