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Overview of this Talk

The main focus in this talk is on pairing-free IBE:
e Motivation
e Cocks’ IBE scheme: IBE in the RSA setting
e Boneh-Gentry-Hamburg IBE scheme
e IBE from trapdoor discrete logarithm groups

e IBE from lattice problems



1 Motivation for Pairing-free IBE

e Pairing-based IBE has seen rapid development.

e But security is based on relatively untested computational
problems.

e And implementation can be complex — many choices of

parameters, families of curves, implementation tricks.
e Efficiency considerations.

e Also of great theoretical interest to find alternative

constructions.



2 Cocks’ IBE Scheme

e Cocks’s IBE scheme was proposed shortly after Boneh-Franklin
IBE.

e 4 page paper published at IMA Coding and Cryptography

Conference, December 2001.
e In fact, scheme was devised in late 1990’s.

e Publication of Boneh-Franklin scheme allowed it to be released

into the public domain.



Cocks’ IBE Scheme

Setup:

1. On input a security parameter k, select N = pg where p, q are

large primes congruent to 3 mod 4.

2. Select H : {0,1}* — Jn where Jn denotes elements of Zy
with Jacobi symbol equal to +1.

— This may involve iterated hashing onto Zy.

3. Return the public system parameters
params = (N, H)

and master secret msk = (p, q).



Cocks’ IBE Scheme

Extract: Given an identity ID € {0, 1}, set
dip = H(ID)N+5=(p+a)/8 mod N

as the private key.

Notice that
(dip)* = £H(ID) mod N.



Cocks’ IBE Scheme: Encryption

Encrypt: Inputs are a single bit message M and an identity ID.
1. Set z = (—1)M™ € {+1,—1}.
2. Choose random t € Zp such that (%) — .

3. Compute the ciphertext

o (t+



Cocks’ IBE Scheme: Decryption

Inputs to decryption are a ciphertext C' and a private key d|p.
Assume (for now) that (dip)? = +H(ID) mod N.

Notice that

H(ID)

C+2dp = t+2dp+
= t(1—|—d|D/t)2 mod N

so that




Cocks’ IBE Scheme: Decryption

Hence the following decryption procedure is correct:

Decrypt:

1. Compute

B C + 2dip

2. If x =1, output M = 0, otherwise output M = 1.



Cocks’ IBE Scheme: Decryption

e If (dip)* = —H(ID) mod N, then sender should compute the

ciphertext
H(ID
C=(t— ¥) mod N

and recipient can decrypt as before.

e Problem is that sender does not (in general) know which

equation recipient’s private key satisfies:
(dp)* = +H(ID) or (dp)*=—H(ID).
e Solution is for sender to “hedge” and send as the ciphertext:

C = ((t+ @) mod N, (¢ — Hi',m

) mod N).



Cocks’ IBE Scheme: Security

e IND-ID-CPA security (in ROM) is based on hardness of the

quadratic residuosity problem in Zy:

— Given a € Zyn with (%) = 1, decide whether a is a square

or a non-square modulo V.
e This problem is known to be not harder than integer
factorisation

— i.e. an efficient algorithm to factorise IV leads to an efficient

algorithm to solve the quadratic residuosity problem in Zy.

— But equivalence with integer factorisation not known.

e Same hard problem as basis for security of Goldwasser-Micali

probablistic encryption scheme.



Cocks’ IBE Scheme: Security

e Original Cocks paper includes only a sketch proof of the
IND-ID-CPA security proof.

e A good exercise to write down a formal proof in the ROM.

e IND-ID-CCA security using Fujisaki-Okamoto conversion.



Cocks’ IBE Scheme: Efficiency

e Scheme is computationally efficient: to encrypt a single bit of
message, only simple Jacobi symbol calculations and inversions

modulo N are needed.

e But scheme is very wasteful in terms of bandwidth: to transmit
a single bit requires 2log, N bits of ciphertext.

e Can expect log, N ~ 1024 for 80-bit security level.

e Hence to transport an 80-bit symmetric key, we’d need
80 - 21024 = 160 kbits of ciphertext.



Cocks’ IBE Scheme: Open Problems

It has been a major open problem to find a bandwidth-efficient
scheme using the same number-theoretic setting as Cocks’

scheme.

Cocks’ approach does not seem to lend itself to further

applications in the same way that Boneh-Franklin IBE does.

Quiz question: What is the (Naor-style) signature scheme

corresponding to Cocks’ IBE scheme?

Is there an ID-NIKD scheme related to Cocks’ IBE scheme?



3 Boneh-Gentry-Hamburg IBE

e Paper published at FOCS’2007 and as TACR eprint 2007/177.

e Solves the major open problem from Cocks: bandwidth-efficient

IBE based on quadratic residuosity problem.

e Encryption of /-bit message needs about ¢ 4 log, N bits instead
of 2¢log, bits.

e But encryption time is quartic in log, N (instead of cubic as in,

say, RSA encryption) and private keys are large.



Boneh-Gentry-Hamburg IBE — Overview
Suppose Q is a deterministic algorithm that, given input (N, R, S)
with R, S € Zy, outputs polynomials f, g satisfying:

1. If R,S € QRn, then f(r)g(s) € QR for all square roots r of
R and s of S.

2. If R € QRy, then f(r)f(—r)S € QRy for all square roots r of
R.

Then @ is said to be IBE Compatible.

Notice that, in this case,




BGH IBE — Single-bit Construction

Setup:

1. On input a security parameter k, select N = pg where p, q are

large primes congruent to 3 mod 4.
2. Select H : {0,1}* — Jn.
3. Select u €p In \ QRN
4. Return the public system parameters

params = (N, H, u)

and the master secret msk = (p, q).



BGH IBE — Single-bit Construction

Extract: Given an identity ID € {0, 1}*, set:
e dp = H(ID)/2if H(ID) € QRx, or
e dp = (uH(ID))Y/2 if H(ID) € ONRx.



BGH IBE — Single-bit Construction

Encrypt: Inputs are a single bit message M and an identity ID.
1. Set z = (—1)M™ € {+1,—1}.
2. Choose random s € Zy and set S = s® mod N.
3. Run IBE compatible algorithm ©Q twice:

(fs9) — QN,H(ID),S), (f.g') — QN,uH(ID),S).

4. Compute the ciphertext

Cz(S,m(&]\‘;)),x.(gx‘;)»




BGH IBE — Single-bit Construction

Inputs to decryption are a ciphertext C' and a private key d|p.
Assume (for now) that H(ID) € QR . Then d|p is a square root of

H(ID). So:
(f%D)> _ (%)

Hence the following decryption procedure is correct:

Decrypt: Given input C' = (S, ¢, ¢):
1. Run Q on input (N, H(ID), S) to produce polynomials (f, g).

N (f(jcilfD)>'

3. If x =1, output M = 0, otherwise output M = 1.

2. Compute




BGH IBE — Single-bit Construction

Assuming that H(ID) € QN Ry, then uH(ID) € QR and
d%y, = uH(ID).

Hence the following decryption procedure is correct in this case:

Decrypt: Given input C' = (S, ¢, ¢):

1. Run Q on input (N,uH (ID), S) to produce polynomials (f’, ¢’).

s (f/(jc\?D))

3. If x =1, output M = 0, otherwise output M = 1.

2. Compute




BGH IBE — Multi-bit Construction

e So far, we have been encrypting one plaintext bit at a time,

with little apparent benefit over Cocks’ scheme.

e Main improvement comes from re-using a single S value across
many bits of plaintext M = M, ..., M,.

e Now set R, = H(ID,i) forv=1,...,¢.
e Use pairs (5, R;) for encrypting message bit ¢, as before.

e Transmit single S value and an additional 2 bits of ciphertext

ci, C; per message bit.

e Size of ciphertext is now 2¢ + log, N bits for ¢-bit message.



BGH IBE — Multi-bit Construction
e Recipient needs a private key component d|p ; corresponding to
each value R; = H(ID,1).
e Hence scheme has large private keys (£log, N bits).
e FEach dip; needs to be a square root of H(ID,) or of uH(ID,1).

e Care is needed to generate square roots in a unpredictable but

deterministic manner.



BGH IBE — Security of Simplified Construction

e IND-ID-CPA security of the multi-bit version of the simplified
BGH construction can be proven based on the hardness of the

quadratic residuosity problem in Zy;.

e Proof in the random oracle model, with a tight security
reduction.
e More advanced ideas can be used to obtain a scheme with:
— Shorter ciphertexts (¢ + log, N bits instead of 2¢ + log, N
bits).
— Recipient anonymity.

— Security proof in the standard model, based on an

interactive version of the quadratic residuosity assumption.



BGH IBE — An IBE Compatible Algorithm

We have yet to show an algorithm Q that, given input (V, R, .5)
with R, S € Zy, outputs polynomials f, g satisfying:

1. If R,S € QRn, then f(r)g(s) € QR for all square roots r of
R and s of S.

2. If R € QRy, then f(r)f(—r)S € QR for all square roots r of
R.



BGH IBE — An IBE Compatible Algorithm

Algorithm Q(N, R, S):
e Construct a solution (x,y) to the equation:

Rx? + Sy? =1 mod N.

e Output f(r) =zr+1 and g(s) = 2ys + 2.

IBE compatibility?



BGH IBE — An IBE Compatible Algorithm

Suppose r, s are square roots of R, S (respectively, if these exist).
Then:

f(r)g(s) = (ar+1)(2ys +2)
= 2xrys + 2xr + 2ys + 2 + (Rx* + Sy* — 1)
= (zr +ys+1)* mod N.

Hence f(r)g(s) € QRn. Moreover,

f(r) - f(=r)-S=...=(Sy)? mod N.



BGH IBE — Solving Rz? + Sy* =1 mod N

e We need to solve this equation twice for each bit of the
plaintext.

e BGH paper contains several algorithmic tricks for doing this.

e One idea is to use the Pollard-Schnorr algorithm that was
introduced to break the Ong-Schnorr-Shamir signature scheme.

e Another is to lift to an equation over the integers to obtain a
ternary quadratic form:

}?xQ—I—SyQ—ZQZO
and then use an algorithm of Cremona and Rusin (itself using
lattice reduction).

e Further optimisations possible because we only need 2/
solutions to related problems.



4 1BE From Trapdoor Discrete
Logarithm Groups

A Trapdoor Discrete Log group generator (TDL group generator)
is defined by a pair of algorithms TDLGen and SolveDL:

e TDLGen: An algorithm that takes a security parameter 1% as
input and outputs (G, r,g,T) where G is a (description of a)
cyclic group of some order r» with generator g and 7' denotes

trapdoor information.

e SolveDL: An algorithm which takes as input (G,r,¢,7T) and a
group element A and outputs a € Z, such that h = g°.



IBE From Trapdoor Discrete Logarithm Groups

e 1, the group order, need not be prime (allows us to handle both
RSA and elliptic curve settings)

e In the RSA setting, » must be kept secret by the party running
the TDLGen algorithm.

— We assume instead that a suitable bound R on the group
order is available as part of the description of G.

e We do not insist that SolveDL runs in time polynomial in k.

e We will require CDH to still be hard in G without knowledge
of T.



IBE From Trapdoor Discrete Logarithm Groups

Construction due to P. and Srinivasan (IACR eprint 2007/453):

Setup: On input 1*, this algorithm runs TDLGen to obtain
(G,r,g,T). It outputs params = (G, g, H1, Hy, n) where
Hy:{0,1}* - G and Hy : G — {0,1}" are hash functions and n is
the size of plaintexts. It also outputs msk = (G, g, H1, Hy,n,r,T).

Extract: On input msk and identifier ID € {0,1}*, run SolveDL
on input H;(ID) to obtain a value dip € Z, such that

g% = H,(ID).

The algorithm then outputs dp.



IBE From Trapdoor Discrete Logarithm Groups

Encrypt: On input params, identifier ID € {0,1}* and message M,
this algorithm returns a ciphertext C' = (U, V') where:

U=g°, V=M®H;H(ID)*), where s g Z,.

Decrypt: On input params, a private key dip and a ciphertext
C = (U, V), this algorithm outputs M =V & Hy(U%P).

Decryption works because:
Ud|[) — gs-d|D — Hl(ID)S
e Essentially, we have an ID-based version of Elgamal encryption.

e We have key pair (dip, H(ID) = g%?) in place of usual (z, g*).



Security of IBE From Trapdoor Discrete
Logarithm Groups

e IND-ID-CPA security can be proved based on the hardness of
Computational Diffie-Hellman problem in G, a trapdoor

discrete log group.
e Proof models H; and Ho as random oracles.

e IND-ID-CCA security can be obtained by applying a

Fujisaki-Okamoto conversion.

So: do we have any trapdoor discrete log groups G for which we

can construct a function H; hashing onto G7?



An RSA-based Instantiation

e Set N = pq where p =3 mod 4, ¢ = 1 mod 4, and
ged(p—1,9 —1) = 2.

e Let g € Zxn be such that g, = g mod p is primitive in Z, and
gy = g mod q is primitive in Z,.

e Then g has maximal order (p —1)(q — 1)/2 and (&) = 1.

e Let G = (g). Then G = Jy.

e Hashing onto G:

— We have (_Wl) = —1.

— Let H : {0,1}* — Zx be a hash function.

— Then define

H,(ID) = (%) . H(ID).



An RSA-based Instantiation

e Now we assume that, for some fixed B to be determined, both

p—1 and ¢ — 1 are B-smooth.

e We can use Pollard’s p algorithm and Pohlig-Hellman
algorithm to find discrete logs in Z, and Z, in time O(¢B'/?),
where ¢ is the number of prime factors of p — 1 and ¢ — 1.

e So, given trapdoor (p, q), we can solve DLP in G in time

O((B'/?).



An RSA-based Instantiation

e Without the trapdoor, solving DLP in G = Jn is known to be

equivalent to factoring V.

e Best (known) algorithm is NFS (with running time Ly (1/3,¢))
or Pollard’s p — 1 algorithm (running time O(Blog N/log B)).

e By appropriate choice of N, we can achieve an asymmetry in
the time needed to solve DLP in G with and without the

trapdoor.

e For B =2% and N ~ 219%%) the times are (roughly) 24° and

280 respectively.



An RSA-based Instantiation

e Resulting IBE scheme has efficient encryption (two exps mod
N) and decryption (one exp mod V), compact ciphertexts and

public parameters, and small private keys.

e It has IND-ID-CPA/CCA security in the ROM, assuming the
hardness of factoring integers of the form N = pg with p — 1
and ¢ — 1 that are B-smooth.

e Only drawback is the 24 effort required for each private key

extraction.

e This scheme is a variant of the Maurer-Yacobi scheme from
Furocrypt 1991.

— Maurer-Yacobi actually presented an ID-NIKDS scheme.

— Their scheme (and later variants) omitted hashing.



An Instantiation from Elliptic Curves

e GHS (Eurocrypt 2002) and Teske (JoC, 2004) proposed the use
of Weil descent to build a trapdoor discrete log for the elliptic

curve setting.

e Main idea is to build a special curve E(F ) and an explicit
homomorphism ® : E(F ) — Jo(F,) where C' is a hyperelliptic

curve of high genus.

e DLP in Jo(F,) can be solved in sub-exponential time using

index-calculus approach.

o F(F,) can be “disguised” using a random walk of isogenies to

create a seemingly random curve E'(IF ).

e So DLP in E'(F ) should take time O(¢g"/?) using generic

algorithms.



An Instantiation from Elliptic Curves

e This gives us a trapdoor for the discrete log problem in a cyclic
subgroup (P’) of E'(F):
e Use inverse of random walk of isogenies to map DLP from
E'(F ) to E(F )
e Then use ® to map DLP to Jo(IF,).

e Example parameters: ¢ = 223, k = 7, giving (conjectured) 80

bits of security.



An Instantiation from Elliptic Curves

e Resulting IBE scheme requires 2 (resp. 1) scalar multiplications

on E’(Fyi61) for encryption (resp. decryption).
e Fast hashing onto subgroup of £’ using standard techniques.

e Hence extremely fast encryption and decryption, with compact

ciphertexts, public parameters and private keys.

e Index calculus techniques make finding many discrete logs
almost as easy as finding one.
— So amortised cost of roughly 22° bit operations per private

key extraction.

e Well suited to deployment in constrained environments with a

computationally meaty TA.



TDL Groups: Open Problems

e Neither of our instantiations is completely satisfactory from a

practical perspective.

e We have very efficient schemes (in terms of encryption and

decryption), but:

— RSA setting: relatively high cost of extracting discrete logs
with trapdoor compared to without.

— ECC setting: uncertainty over hardness of DLP on chosen
curves (depends on effectiveness of using isogenies to

disguise F); scalability to higher security levels.

e A truly efficient trapdoor for the DLP in some class of
cryptographically interesting groups would have many

applications in cryptography!



5 IBE From Lattice Problems

e Recent paper of Gentry, Peikert and Vaikuntanathan (STOC
2008 and TACR eprint 2007/432).

e IBE schemes (and much else) based on hardness of “learning

with error” (LWE) problem in random modular lattices.

— LWE problem generalises LPN problem used in RFID

authentication protocols.

— Problem is to distinguish “lattice point plus error” from a

random vector in Z'g.

— Regev: as hard as solving standard worst-case lattice

problems (but using a quantum algorithm!).



IBE From Lattice Problems: Overview
e Public parameters include matrix A € Zy*™, defining a
modular lattice, and a hash function H : {0,1}* — Z7.
e Here, n, m and ¢ are all moderate values.
e Master secret is a basis of short vectors for A.

e Given this special basis, TA can solve equation:
H(|D) = A . d|D mod q

for short vector dip € Z;" — giving private key extraction

algorithm.



IBE From Lattice Problems: Overview

e To encrypt a bit b for identity ID, output
C=(p,c)=(A"s+x, HID)"'s+x+b-|q/2]) € Z]" x Z,
e Here s € Z,; and x is an error vector selected according to
some distribution.

e To decrypt C = (p, ¢), compute b’ = ¢ —d?¥}, - p, outputting 0 if
the result is closer to 0 than |¢/2] mod ¢, and 1 otherwise.



IBE From Lattice Problems: Security and
Efficiency

e Scheme can be extended to encrypt multiple bits at a time

using fixed s and p = A's + x.
e Similar to BGH IBE scheme — requires large private keys.

e Encryption and decryption require only simple operations
involving small vectors and matrices with elements from Z, for

moderate gq.

e IND-ID-CPA security and recipient anonymity in the ROM
based on hardness of LWE problem.

— How should parameters n, m and q be selected to achieve a

given security level for this scheme?



6 Conclusions

e Pairing-free IBE motivated by desire for diversification.
e Still in its infancy (relative to pairing-based approaches).

e Beautiful and sophisticated mathematical techniques.

— Particularly in Cocks’, BGH and lattice-based schemes.

e Practical evaluation of pairing-free schemes is still lacking

— e.g. specifying secure choice of parameters for new
lattice-based schemes.

— e.g. prototyping ECC-TDL-based scheme.

e Much yet to be discovered!



