Elliptic Curves over Prime and Binary Fields in Cryptography

Authors

Dana Neustadter (danan@ellipticsemi.com)
Tom St Denis (tstdenis@ellipticsemi.com)

Elliptic Curve Cryptography (ECC)

- Public key (asymmetric) cryptosystem
- Based upon a hard number theoretic problem: Elliptic Curve Discrete Logarithms (ECDL)
- At the base of ECC operations is finite field (Galois Field) algebra with focus on prime Galois Fields (GF(p)) and binary extension Galois Fields (GF(2^m))
- Standardized by NIST, ANSI and IEEE: NIST, NSA Suite B, ANSI X9.62, IEEE P1363, etc.

Elliptic Curve Discrete Logarithms

- ECDL is a so called "trap-door" or "one-way" function
- Given an elliptic curve and points P and Q on the curve, find integer k such that Q = k * P
- Relatively easy to use to transform data one-way, but having the result and the transformation key does not easily give the input:
 - encryption is easy to compute
 - decryption much more complicated if not impossible to compute without knowing the trap-door
- The hardness of ECDL defines the security level of all ECC protocols

ECC Systems

- Performance, security, size and versatility of ECC systems are a function of:
 - finite field selection
 - elliptic curve type
 - point representation type
 - algorithms used
 - protocol
 - key size
 - hardware only, software only or mixed hardware-software implementations
 - memory available (table lookups)
 - code and area

ECC Operations Hierarchy

- First level: basic Galois Field operations
 - GF addition
 - GF multiplication
 - GF inversion
- Second level: Elliptic Curve point operations
 - Point Add
 - Point Double
- Third Level: Elliptic Curve point operation
 - Point Multiplication the fundamental and most time consuming operation in ECC
- Fourth Level: ECC protocol
 - ECDSA, ECDH, ECMQV, El-Gamal, ...

ECC Operations Hierarchy

Finite (Galois) Fields

- Finite Field = A finite group of prime characteristic (with defined ring structure, and multiplicative structure)
- The number of units in the finite field is determined by the "field order" which is based on a prime number or the power of a prime number
- Allow for fields to be practically manipulated with full accuracy

Galois Fields

- Galois Field algebra is at the base of ECC operations and protocols
- Best suited for cryptographic applications and primarily used:
 - Prime fields GF(p)
 - operations are done modulo prime number p
 - Binary extension fields GF(2^m)
 - operations are done modulo an irreducible polynomial F(t)
 - Binary composite fields GF((2^m)ⁿ)
 - Prime extension fields GF(p^m)
 - Edward Curves (Bernstein et al.)

- \bullet GF(p) = prime field of order p
- ◆ GF (p) contains p elements, p 1 units
- Field elements are residue classes modulo p
- At the basis of GF(p) related operations is integer modular arithmetic
- Basic operations
 - addition (GF add) : a + b mod p
 - subtraction (GF sub) : a b mod p
 - multiplication (GF mul) : a x b mod p
 - division (GF div) : a / b mod p
 - inversion (GF inv): 1 / b mod p

- Algorithms
 - Reduction techniques
 - Reduced Radix (NIST curves)
 - Montgomery (more practical)
 - Multiplication techniques
 - Comba multipliers
 - Karatsuba (less so)
 - Inversion (dominant last step)
 - Euclids
 - Almost Inverse

- Commonly used for software implementations because the integer arithmetic is more optimized in today's microprocessors
- Desktops: favour fast multipliers
- Embedded: varies based on processor architecture
- Hardware implementations benefit from the full size operands but the area impact may be significant
- Hardware implementations carry chain timing challenges

- Integer Multiply and Accumulate
 - Multiply and accumulate is the inner dominant step for multiplication and squaring
 - With Comba it requires a 3x wide accumulator and a 2x wide product
 - Examples:

```
x86 32
                        ARM V5
movl
      %6,%%eax
                              r0,r1,%6,%7
                        UMULL
mull
      %7
                               %0,%0,r0
                        ADDS
addl %%eax,%0
                        ADCS %1,%1,r1
adcl %%edx,%1
                        ADC
                               %2,%2,#0
adcl
     $0,82
```


- Integer Multiply and Accumulate
 - Examples:

PPC32		MIPS32	
mullw	16,%6,%7	multu	%6 , %7
addc	%0,%0,16	mflo	\$12
mulhwu	ı 16,%6,%7	mfhi	\$13
adde	%1,%1,16	addu	%0,%0,\$12
addze	%2 , %2	sltu	\$12,%0,\$12
		addu	%1 , %1 , \$13
		sltu	\$13,%1,\$13
		addu	%1 , %1 , \$12
		sltu	\$12,%1,\$12
		addu	%2,%2,\$13
		addu	%2,%2,\$12

- Large field order is more challenging for standard computers
 - The elements of the field have to be represented by multiple words
 - Carries between words have to be propagated
 - Comba technique pays off, reduces carry chain to small three-register chain
 - The reduction operation has to be performed across multiple words
 - NIST's "reduced radix" form is generally impractical in software
 - Montgomery reduction used predominantly

Prime Extension Fields

- Fields of form $GF(p^q)$ for some prime p
 - p is usually either very small (large q) or relatively moderate (smaller q)
- Can lead to "Optimal Extension Fields" where p fits in a machine register (larger q)
- Removes the requirement to propagate carries
- Fast inversion algorithms exist
- Reduction can be more complicated than straightforward integer Montgomery

Binary Extension Fields GF (2^m)

- Finite field with 2^m elements: GF(2^m) = GF(2)[x] / F(x)
 - GF(2)[x] is a set of polynomials over GF(2)
 - $F(x) = x^m + f_{m-1}x^{m-1} + ... + f_2x^2 + f_1x + 1$ is the irreducible polynomial (trinomial and pentanomial primarily used)
 - f_i are GF(2) elements
- Basic operations
 - addition (GF add) : A(x) + B(x)
 - subtraction (GF sub) : A(x) B(x)
 - multiplication (GF mul) : A(x) x B(x) mod F(x)
 - division (GF div) : A(x) / B(x) mod F(x)
 - inversion (GF inv): 1 / B(x) mod F(x)

Binary Extension Fields

- Two main advantages regarding the Binary Finite Field math GF(2):
 - the bit additions are performed mod 2 and hence represented in hardware by simple XOR gates => no carry chain is required
 - the bit multiplications are represented in hardware by AND gates
 - "1" is its own inverse => (1 = -1)
- ◆ The GF(2^m) elements can be viewed as vectors of dimension m where each bit can take values "0" or "1"
- All GF(2^m) field operations require *m*-bit operations which are more efficiently implemented in hardware because of GF(2) algebra properties (XORs, ANDs, no carry)

Binary Extension Fields

- Algorithms
 - Almost Inverse
 - Simple way to compute inverse with compact FSM with compact registers
 - Squaring
 - Free
 - Reduction can be accomplished in O(log n) time
 - Same is true for GF(p) but at a much higher size cost
 - Multiplication
 - Bit serial, digit serial, bit parallel

Binary Extension fields

- Not as efficient in SW implementations compared to prime fields where large multipliers are available
 - Integer multipliers can deal with word size data
 - Not true for smaller processors with inefficient integer multipliers
- Even more challenging for custom SW implementations if m is a large value
 - Challenging for SW implementations with reduced register space
- Usually use a sliding window dbl/add to speed up multiplication

Elliptic Curves

- An elliptic curve over a finite field has a finite number of points with coordinates in that finite field
- Given a finite field, an elliptic curve is defined to be a group of points (x,y) with x,y ∈ GF, that satisfy the following generalized Weierstrass equation:
 - $y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$, where $a_i \in GF$
- Nonsupersingular EC over the finite binary field GF(2^m)
 - $y^2 + xy = x^3 + ax^2 + b$ a, $b \in GF(2^m)$
- EC over prime field GF(p)
 - $y^2 = x^3 + ax + b$ $a,b \in GF(p), 4a^3 + 27b^2 \neq 0, a = -3 typically$

Elliptic Curves

- Basic Point Operations
 - Point add: P(x,y) + Q(x,y)
 - Point double: 2 * P(x,y)
 - Point (scalar) multiplication: k * P(x,y), where k ∈ [1, n-1] and n is the order of the EC base point
 - k * P(x,y) = P + P + ... + P (k summands)
 - Dominates the execution time in ECC
 - Requires multiple operations of point add and point double
 - Various algorithms available which are field type and coordinate representation dependent

Elliptic Curves

- Algorithms
 - EC over binary extension fields
 - Double and add
 - Montgomery scalar multiplication
 - Using Frobenius expansion, etc
 - EC over prime fields
 - Double and add
 - Fixed point
 - Shamir, etc

NIST Standard Elliptic Curves

- Pseudo-random curves over GF(2^m)
 - B-163, B-233, B-283,
 B-409, B-571
- Koblitz curves (special curves over GF(2^m))
 - K-163, K-233, K-283,
 K-409, K-571

- Curves over prime fields GF(p)
 - P-192
 - P-224
 - P-256
 - P-384
 - P-521

Point Multiplication Performance

- Based on Elliptic's hardware and software solutions for B-233 and P-224 NIST Elliptic Curves
- Hardware IP
 - B-233: 4500 cyc/pmult (250k gates)
 - B-233: 800000 cyc/pmult (60k gates)
 - P-224: 900000 cyc/pmult (50k gates + memories)
- Software IP (on Power PC)
 - B-233: 5300000 cyc/pmult
 - P-224: 3500000 cyc/pmult

Conclusions

- Both prime and binary extension fields are finding uses in real world ECC applications
- The implementation of ECC solutions is highly dependent on the problem being solved, the implementation platform and the level of security intended to be achieved
- New finite field and elliptic curve types may emerge in ECC applications in the future

About Elliptic

- Incorporated August 2001
- Largest portfolio of volume proven security cores
 - 1st to market in several application spaces (MACsec, DTCP, others)
- Software and IP cores shipping in volume
- Security solutions spanning cores and middleware
- Customers in the U.S., Canada, China, Japan, Malaysia, Taiwan, Korea, Israel and Europe
- Partnerships with leading industry players including ARM, MIPS, RSA, Impinj, Lattice, Faraday
- NIST Certified cores and software
- 20 Patents in process, 1 issued
- Investors:

