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Elliptic Curve Cryptography (ECC)

@ Public key (asymmetric) cryptosystem

@ Based upon a hard number theoretic problem: Elliptic
Curve Discrete Logarithms (ECDL)

@ At the base of ECC operations is finite field (Galois
Field) algebra with focus on prime Galois Fields (GF(p))
and binary extension Galois Fields (GF(2™))

@ Standardized by NIST, ANSI and IEEE: NIST, NSA
Suite B, ANSI X9.62, IEEE P1363, etc.
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Elliptic Curve Discrete Logarithms

@ ECDL is a so called “trap-door” or “one-way” function

@ Given an elliptic curve and points P and Q on the curve,
find integer k such that Q =k * P

@ Relatively easy to use to transform data one-way, but
having the result and the transformation key does not
easily give the input:

@ encryption - is easy to compute
¢ decryption - much more complicated if not impossible to
compute without knowing the trap-door

@ The hardness of ECDL defines the security level of all
ECC protocols
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ECC Systems

@ Performance, security, size and versatility of ECC
systems are a function of:
¢ finite field selection
¢ elliptic curve type
¢ point representation type
¢ algorithms used
¢ protocol
¢ key size

¢ hardware only, software only or mixed hardware-software
iImplementations

¢ memory available (table lookups)
@ code and area
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ECC Operations Hierarchy

@ First level: basic Galois Field operations

= GF addition
- GF multiplication
= GF inversion

@ Second level: Elliptic Curve point operations

= Point Add
= Point Double

@ Third Level: Elliptic Curve point operation

- Point Multiplication — the fundamental and most time consuming
operation in ECC

@ Fourth Level: ECC protocol
- ECDSA, ECDH, ECMQV, El-Gamal, ...
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ECC Operations Hierarchy

o e

GF add/sub GF mul GF div/inv

Elliptic)

il ke Senam L s el

© Copyright 2008 Elliptic Semiconductor Inc.



Finite (Galois) Fields

@ Finite Field = A finite group of prime characteristic (with
defined ring structure, and multiplicative structure)

@ The number of units in the finite field is determined by the
“field order” which is based on a prime number or the
power of a prime number

@ Allow for fields to be practically manipulated with full
accuracy
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(Galois Fields

@ (alois Field algebra is at the base of ECC operations and
protocols

@ Best suited for cryptographic applications and primarily
used:

¢ Prime fields GF(p)

- operations are done modulo prime number p

¢ Binary extension fields GF(2™)
- operations are done modulo an irreducible polynomial F(t)

¢ Binary composite fields GF((2™)")

¢ Prime extension fields GF(p™)
- Edward Curves (Bernstein et al.)
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Prime Galois Fields

@ GF(p) = prime field of order p
@ GF (p) contains p elements, p — 1 units
@ Field elements are residue classes moaulo p

@ At the basis of GF(p) related operations is integer
modular arithmetic

@ Basic operations
¢ addition (GF add) : a + b mod p
¢ subtraction (GF sub):a—-bmodp
¢ multiplication (GF mul) : a x b mod p
¢ division (GF div) :a/bmod p
¢ inversion (GF inv):1/bmodp
Elliptic
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Prime Galois Fields

@ Algorithms
¢ Reduction techniques
- Reduced Radix (NIST curves)
- Montgomery (more practical)
¢ Multiplication techniques
- Comba multipliers
- Karatsuba (less so)
¢ |nversion (dominant last step)
- Euclids
- Almost Inverse
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Prime Galois Fields

@ Commonly used for software implementations because
the integer arithmetic is more optimized in today's
MICroprocessors

@ Desktops: favour fast multipliers
@ Embedded: varies based on processor architecture

@ Hardware implementations benefit from the full size
operands but the area impact may be significant

@ Hardware implementations carry chain timing challenges
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Prime Galois Fields

@ |nteger Multiply and Accumulate
¢ Multiply and accumulate is the inner dominant step for

multiplication and squaring

¢ With Comba it requires a 3x wide accumulator and a 2x wide

product
¢ Examples:

x86 32

movl %6,%%eax
mull &7

addl %%eax, %0
adcl %$%edx, %1
adcl S$0,%2
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ARM V5
UMULL
ADDS
ADCS
ADC

r0,rl,%6,%7
%0,%0,r0
%1,%1,rl
22,%2,#0
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Prime Galois Fields

@ Integer Multiply and Accumulate
¢ Examples:
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PPC32

mullw 16,%6,%7
addc %0,%0,16
mulhwu 16,%6,%7
adde %$1,%1,16
addze %2,%2
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MIPS32
multu
mflo
mfhi
addu
sltu
addu
sltu
addu
sltu
addu
addu

%6,%7

$12

$13
%0,%0,$12

$12,%0,$12
$1,%1,$13

$13,%1,$13
$1,%1,$12

$12,%1,$12
$2,%2,$13
$2,%2,$12
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Prime Galois Fields

@ Large field order is more challenging for standard
computers

¢ The elements of the field have to be represented by multiple
words

¢ Carries between words have to be propagated

- Comba technique pays off, reduces carry chain to small three-register
chain

¢ The reduction operation has to be performed across multiple
words
- NIST's “reduced radix” form is generally impractical in software
- Montgomery reduction used predominantly
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Prime Extension Fields

@ Fields of form GF(p?) for some prime p

¢ pis usually either very small (large q) or relatively moderate
(smaller q)

@ Can lead to “Optimal Extension Fields” where pfits in a
machine register (larger q)

@ Removes the requirement to propagate carries
@ Fast inversion algorithms exist

@ Reduction can be more complicated than straightforward
integer Montgomery

Elliptic)

pila ke Saam Le s

© Copyright 2008 Elliptic Semiconductor Inc. 15



Binary Extension Fields GF (2™)

@ Finite field with 2™ elements: GF(2™) = GF(2)[x] / F(x)
¢ GF(2)[x] is a set of polynomials over GF(2)
¢ F(x)=x"+f x™ +.. +fx°+fx+1istheirreducible
polynomial (trinomial and pentanomial primarily used)
¢ f are GF(2) elements

@ Basic operations
¢ addition (GF add) : A(x) + B(x)
¢ subtraction (GF sub) : A(x) — B(x)
¢ multiplication (GF mul) : A(x) x B(x) mod F(x)
¢ division (GF div) : A(x) / B(x) mod F(x)
¢ inversion ( GF inv) : 1/ B(x) mod F(x)
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Binary Extension Fields

@ Two main advantages regarding the Binary Finite Field
math GF(2):
¢ the bit additions are performed mod 2 and hence represented
in hardware by simple XOR gates => no carry chain is required

¢ the bit multiplications are represented in hardware by AND
gates

¢ “1”is its own inverse => (1 = -1)
@ The GF(2™) elements can be viewed as vectors of
dimension m where each bit can take values “0” or “1”

@ All GF(2™) field operations require m-bit operations which
are more efficiently implemented in hardware because of
GF(2) algebra properties (XORs, ANDs, no carry)

Elliptic

pila ke Saam Le s

© Copyright 2008 Elliptic Semiconductor Inc. 17



Binary Extension Fields

@ Algorithms

¢ Almost Inverse

- Simple way to compute inverse with compact FSM with
compact registers

¢ Squaring

- Free
¢ Reduction can be accomplished in O(log n) time

- Same is true for GF(p) but at a much higher size cost
¢ Multiplication

- Bit serial, digit serial, bit parallel
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Binary Extension fields
@ Not as efficient in SW implementations compared to
prime fields where large multipliers are available
¢ [nteger multipliers can deal with word size data

¢ Not true for smaller processors with inefficient integer
multipliers

@ Even more challenging for custom SW implementations if
mis a large value

¢ Challenging for SW implementations with reduced register
space

@ Usually use a sliding window dbl/add to speed up
multiplication
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Elliptic Curves

@ An elliptic curve over a finite field has a finite number of
points with coordinates in that finite field

@ Given a finite field, an elliptic curve is defined to be a
group of points (x,y) with X,y € GF, that satisfy the
following generalized Weierstrass equation:

e Y +axy+ay=x+ax +ax+a, wherea €GF

@ Nonsupersingular EC over the finite binary field GF(2™)
e V2+xy=x2+axt+b a,b&GF(2)

@ EC over prime field GF(p)
¢ y’=x3+ax+b ab&GF(p),4a®+27b%+#0, a =-3 typically
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Elliptic Curves

@ Basic Point Operations
¢ Point add: P(x,y) + Q(x,y)
¢ Point double: 2 * P(x,y)
¢ Point (scalar) multiplication: k * P(x,y), where K €[1, n-1] and n
is the order of the EC base point
- k*P(xy)=P+P+..+P (ksummands)
- Dominates the execution time in ECC

- Requires multiple operations of point add and point double

- Various algorithms available which are field type and coordinate
representation dependent
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Elliptic Curves

@ Algorithms

¢ EC over binary extension fields
- Double and add
- Montgomery scalar multiplication
- Using Frobenius expansion, etc
¢ EC over prime fields
- Double and add
- Fixed point
- Shamir, etc
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NIST Standard Elliptic Curves

@ Pseudo-random curves @ Curves over prime fields

over GF(2™) GF(p)
¢ B-163, B-233, B-283, ¢ P-192
B-409, B-571 e P-294
@ Koblitz curves (special ¢ P-256
curves over GF(2™)) ¢ P-384
¢ K-163, K-233, K-283, ¢ P-521
K-409, K-571
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Point Multiplication Performance

@ Based on Elliptic's hardware and software solutions for
B-233 and P-224 NIST Elliptic Curves

@ Hardware IP
¢ B-233: 4500 cyc/pmult (250k gates)
¢ B-233: 800000 cyc/pmult (60k gates)
¢ P-224: 900000 cyc/pmult (50k gates + memories)

@ Software P (on Power PC)

¢ B-233: 5300000 cyc/pmult
¢ P-224: 3500000 cyc/pmult
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Conclusions

@ Both prime and binary extension fields are finding uses in
real world ECC applications

@ The implementation of ECC solutions is highly dependent
on the problem being solved, the implementation platform
and the level of security intended to be achieved

@ New finite field and elliptic curve types may emerge in
ECC applications in the future
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About Elliptic

@ Incorporated August 2001

& Largest portfolio of volume proven security cores
@ 1%tto market in several application spaces (MACsec, DTCP, others)

@ Software and IP cores shipping in volume
@ Security solutions spanning cores and middleware

@ Customers in the U.S., Canada, China, Japan, Malaysia, Taiwan, Korea, Israel
and Europe

@ Partnerships with leading industry players including ARM, MIPS, RSA, Impin;,
Lattice, Faraday

@ NIST Certified — cores and software EERUE
& 20 Patents in process, 1 issued
& Investors:

— Investment
Elliptic BDC SKYPOINT AX/S Fund Inc.
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