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MotivationMotivation
Hierarchical subdivisions of cryptography

l   Protocols  (e.g., Needham Schroeder)
Produce solutions for cryptographic problems

Algorithms (e.g., AES)
Protocols

Used to construct protocols

Primitives
Used to construct algorithms 

Protocols

Algorithms

P i i i
g

Boolean functions 
Constitute one of the basic primitives for symmetric key cryptography
Strong connection between cryptanalytic attacks and the properties of 

Primitives

Strong connection between cryptanalytic attacks and the properties of 
the underlying Boolean functions
Some attempts for use in public key cryptography 



Cl i l l  f  t  i hClassical examples for stream ciphers
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Nonlinear
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Cl i l l  f  Bl k i hClassical examples for Block ciphers
Plaintext

F

FF

F

Ciphertext



Boolean FunctionsBoolean Functions
A Boolean function in n variables

22: FFf n →

Multiple-output Boolean functions    
Also known as 

S B

mn FFf 22: →

S-Boxes

Vectorial Boolean functions 

: the set of “Boolean” functionsmnΒ ,
mn FFf 22: →

Exhaustive search is not an option 
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Boolean function RepresentationBoolean function Representation

Truth Table Algebraic Normal Form (ANF)Truth Table Algebraic Normal Form (ANF)
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• Exists and unique
•The ANF degree is affine invariant
• Evaluation requires O(n2n) operationsq p



Walsh Hadamard TransformWalsh-Hadamard Transform

here where 

Almost all cryptographic properties can be expressed in terms of 
h  WHT

∑
∈

⋅+−=
nFx

xwxfwF
2

)()1()( nn xwxwxw ++=⋅ L11

the WHT
Can be evaluated in O(n2n) operations

What is the best representation?
TT  WHT  or ANFTT, WHT, or ANF
Example:   

o ANFD
o }0)(|{#)( ≠∈= xfFxfw n }0)(|{#)( 2 ≠∈= xfFxfwH



Graph Representation: Quadratic 
f tifunctions

Boolean functions with only quadratic terms
can be represented by an undirected graph with n nodes
An edge between node i and j exists iff in the ANF of  

B l  f ti  di  t  i hi  h  
1=ija f

Boolean functions corresponding to isomorphic graphs 
belong to the same affine class

Example  
43423241214321 ),,,( xxxxxxxxxxxxxxf ++++=
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DefinitionsDefinitions

Connected Graphs Regular GraphsConnected Graphs Regular Graphs

A graph  in which any two 
vertices are connected by a 

A graph  in which every 
vertex has the same degree vertices are connected by a 

path is called a connected 
graph.

vertex has the same degree 
is called a regular graph



Strongly Regular GraphStrongly Regular Graph

A graph G  is strongly regular if there exist
nonnegative integers e  and d  such that, for all 
vertices νμ , , the number of vertices adjacent to
both μ  and ν , ( )νμδ ,  is given by both μ  and ν , ( )νμδ ,  is given by 

( )
⎩
⎨
⎧

=
otherwise                      ,
adjacent are  and   if ,

,
d
e νμ

νμδ  
⎩

node 0  and 1 are adjacent and have 0 common
hb 0neighbours  0=⇒ e  

node 0  and 2  are not adjacent and have 2 
common neighbours  2=⇒ d  
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Graph SpectrumGraph Spectrum
Given a graph G and its adjacency matrix A, the spectrum of 
G is the set of the eigenvalues of A, which are also called 
eigenvalues of G.

Isomorphic graphs have the same spectrumIsomorphic graphs have the same spectrum



G h R t ti  G l Graph Representation: General case
A general Boolean function can be associated with a Cayley graph 
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There is a 1-1 relationship between the graph eigenvalues and the 
Walsh coefficients: )(2 iFn

i =λ



Example:Example:
Truth Table:

f(x) = [0 0 1 1]f(x) = [0 0 1 1]
Walsh Transform:

F(ω) = [2 0 -2 0]

x
x

n xfF ⋅− −= ∑ ωω )1()(2)(

Adjacency Matrix:

⎥
⎤

⎢
⎡ 1100

⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢

=
0011
1100

A

⎥
⎦

⎢
⎣ 0011

Eigenvalues:

λ [ 2 0 0 2]
Associated Cayley Graph 

14

λ = [-2 0 0 2]



ExampleExample
Truth Table:

f(x) = [0 1 1 1 0 0 1 0]f(x) = [0 1 1 1 0 0 1 0]
Walsh Transform:

F(ω) = [4 0 -2 -2 2 -2 0 0]

Adjacency Matrix:

⎥
⎥
⎤

⎢
⎢
⎡

10001101
01001110

⎥
⎥
⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢
⎢
⎢

=
11100100
00100111
00011011
10001101

A

⎥
⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢
⎢

⎣ 01110010
10110001
11011000

Associated Cayley Graph

15
Eigenvalues:

λ = [-2 -2 -2 0 0 0 2 4]



1-1 Correspondences with Polynomial 
F ti  d P i di  SFunctions and Periodic Sequences

Polynomial 
T  Functions

Lagrange
Interpolation

Trace 
Representation
(IDFT)

l Vector 

Periodic B l  

Evaluation Vector 
Space

Periodic 
Sequences

Boolean 
Functions



ExampleExample

Truth TableTruth Table
x 0 1 2 3 4 5 5 7 8 9 10 11 12 13 14 15

S(x) 0 1 8 15 12 10 1 1 10 15 15 12 8 10 8 12
Interpolation

Evaluation

344

Corresponding Polynomial Function

344 )(1)(bydefined)2( xxsxxxfGF =⇒++=
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Cryptographic properties of Boolean 
f tifunctions

Balance

Correlation immunity

Resiliency 

Nonlinearity

Algebraic normal form degree

Algebraic immunity degree



ANFDANFD
LFSR

Filter 
Function

Using  Berlekamp Massey algorithm,  
the initial value and the connection  Polynomial of 
the LFSR can be deduced  using 2L consecutive bitst e S  ca  e e uce   us g  co secut ve ts

Output will have an equivalent length

C1. The ANFD, d, should be as high as possible



ResiliencyResiliency
Combining functions must be balanced

If    remains balanced if we fixed up to      of its input 
coordinates, then f is called m-resilient 

I   f WHT

f m

In terms of WHT

F
wF
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=

)(th thllf
0)(

mwwFw H
n ≤∈ )(thatsuchallfor 2

C2. The resiliency degree m should be as high as possible

Siegenthaler bound (c1 & c2) : 
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functionsbalancedfor1

,
−≤+

≤+
ndm
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NonlinearityNonlinearity
The nonlinearity  of f is the minimum hamming distance 
between f and the set of Affine functions 

In terms of  WT

|)(|
2
12 max

2

1 wFNL
nFw

n
f

∈

− −=

h ld b h h blC3. NL should be as high as possible

Sarkar-Maita Bound (C2 & C3): 11 22 +− −≤ mnNL



Bent functionsBent functions
Bent functions are functions that

have flat WHT spectrum
achieve the maximum possible nonlinearity 

L t f b   b t f ti  d G it  i t d h  Th  G Let f be a bent function and G its associated graph. Then, G 
is strongly regular graph and has the additional property 
e=d.

Different generalizations
Carlet Hyper-bent functions
Youssf and Gong Hyper-bent functions

22



Correlation Attack of Vectorial Stream Ciphers

LFSR 1
Vectorial 

x1

x
z1

LFSR

...x1 x2 xn

Correlation Attack of Vectorial Stream Ciphers

LFSR 2

LFSR n

...

Vectorial 
Boolean 
Function

...
...

x2

x

z2

zm

Vectorial 
Boolean 
Function

xn ...

z1 z2 zm

).......Pr()Pr( 1111 xwxwzbzbxwzb ⊕⊕=⊕⊕=⋅=⋅

• For correlation attack to succeed, we require                                                    to be high 
where z=f(x) is the output. i.e. probability is far away from ½.

).......Pr()Pr( 1111 nnmm xwxwzbzbxwzb ⊕⊕⊕⊕

|)Pr(| 2
1−⋅=⋅= xwzbBias

• Thus the nonlinearity:
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Unrestricted Nonlinearity

Vectorial 
Boolean .

x1

x2

z1

z2
g(z)

LFSR 1

LFSR 2

y

Si i k h k id

Function
...

..

xn

zm

g( )

LFSR n

• Since z is known, the attacker can consider 

which is linear in x for any Boolean function g( ).

).)(Pr()...)(Pr( 11 xwzgxwxwzg nn ⋅==⊕⊕=
y g( )

• For the attack to succeed, we require
to be high

•Th th t i t d li it
|))(Pr(| 2

1−⋅== xwzgBias
•Thus, the unrestricted nonlinearity
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Algebraic AttacksAlgebraic Attacks
Initial state ),,( 110 −= nssss L

The output stream is given by

)(= sssfo L

)),,,,((
),,,,(

1101

1100

−

−

=
=

n

n

sssLfo
sssfo

M

L

L

Al b  k    ff l   f  h   

)),,,(( 110 −= n
k

k sssLfo L

Algebraic attacks try to efficiently recover s from the output 
sequence O



Algebraic AttacksAlgebraic Attacks
In general, solving the system of multivariate equations is NP 
complete (even if all the equations are quadratic)

Linearization
GrÖbner Basis GrÖbner Basis 

If      has ANFD d, then                                 would roughly 
have         monomials

f )),,,(( 110 −n
k sssLf L

⎟⎟
⎞

⎜⎜
⎛n

Using a simple Linearization approach, S can be recovered by 
solving a system with       variables; complexity   ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
d
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⎠
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⎝d
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⎠

⎞
⎜⎜
⎝

⎛
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d
n
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Linearization Examplep



Algebraic AttacksAlgebraic Attacks
If one can find a (non zero) function g of degree dg<df such 
that 

0)1(or0 =+∗=∗ fgfg

then the number of unknowns can be reduced to ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

fg d
n

d
n

eXtended Linearization (XL algorithm)      



Algebraic ImmunityAlgebraic Immunity
AI(g) is the lowest degree of any non zero g such that

0)1(*or0 =+=∗ fgfg

Some argues that it should be called annihilator  immunity

⎡ ⎤2)( nfAI ≤

For even n, AI is almost always

For odd n, AI is almost always
2
n≈

2
1−≈ n

AI implies a lower bound on nonlinearity ∑
−
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⎞
⎜⎜
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≥
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Complexity of finding AIComplexity of finding AI
Compute the annihilator space of degree ≤ d

Number of coefficients in g
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

d
nnn

k L
10

0)(equationlinear1)(thatsuch =→=∀ xgxfx
Number of equations: 

Gaussian elimination requires 
3

)( fwH

)2( 2 kO
n

Meier, Pasalic and Carlet: O(k3)

State of the art (Armknecht et. al): O(k2)



E l  f  ll k  t tiExamples for well known constructions
Maiorana-McFarland’s (MM) constructions (concatenation  
of affine functions)

::where
),()(),(

2
2/

2
2/

2
2/

2φ

φ

FFgFF
ygyxyxf

nnn →→

+⋅=
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:,:where 2222

φ
φ
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FFgFF →→

Similar constructions for resilient functions
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Other Algebraic constructionsOther Algebraic constructions
Power functions  )2(over nd GFx



Heuristic optimization based 
t ticonstructions

Previous algebraic approaches may not always allow the 
system designer to achieve optimal constructions

Exhaustive search is not an option for 

C h ll  h B l  f  l

8>n

Cryptographically rich Boolean function classes
Limited  search space but rich in cryptographically good 
functions

Spectral Inversion
Possible cost functions



Cryptographically rich classesCryptographically rich classes
Symmetric functions (too restrictive)

Rotation symmetric functions

σσσ nspermutatioallfor),...,(),...,( )()1(1 nn xxfxxf =

kk ff hiflillf)())((
Dihedral Symmetric Boolean

Functions invariant under the action of Dihedral group D

k
nn

k xxfxxf ρρ shiftscyclicallfor),...,()),...,(( 11 =

Functions invariant under the action of Dihedral group Dn

In addition to the cyclic shift, Dn includes a reflection operator 

),,...,(),...,,( 1221 xxxxxx nnn =τ )()( 1221 nnn



n 3 4 5 6 7 8 9 10

C 8 16 32 64 128 256 512 1024CBF 8 16 32 64 128 256 512 1024

CRSBF 4 6 8 14 20 36 60 108

CDSBF 4 6 8 13 18 30 46 78

CSBF 4 5 6 7 8 9 10 11

DSBFC2

SBFC2
n

RSBFC2

DSBF2

2)(1C

2C

|
RSBF

n
BF

=

=

∑ k
n nk

k
n

φ

SBF

BFC21
|

+= nC
n

SBF

nk

SBF

BF
RSBF

DSBF



S l i  t   bl  Solving two open problems 
Let (n,m,d,nl) denote

n-variable 
m-resilient
ANF degree  d ANF degree, d 
Nonlinearity nl

The existence of  (9,3,5,240) and (10,2,7,488) has been an e e ste ce o   (9,3,5, 40) a  ( 0, , ,488) as bee  a  
open problem.

Using a heuristic search, we are able to construct several 
examples for such resilient functions. 



C t ti  f  (9 3 5 240) f tiConstruction of a (9,3,5,240) function
Consideration of the Search Space

BF search space is too large  (      )   
RSBF space is moderate (     ) but it was proved that no such 
RSBF function exists

5122
602

RSBF function exists
Spectral inversion: 

The spectrum of any                                function is necessarily a three-( )11 22,,, +− −− mnmn
( ) ⎥⎢n

( ) ( ) 22 mod 0 +=⇒= mFmfres ω

valued function (Plateaued)                  , 

Direct spectral inversion 
( )22,0 +± m

( ) ⎨
⎧ ≤ ,3)( if         ,0 ωwt

⎥⎦
⎥

⎢⎣
⎢ −> 2
2
nm

did not prove to be useful

( )
⎩
⎨
⎧

>
=

3)( if  ,32or  0
,3)(,0

ω
ω

ω
wt
wt

F

did not prove to be useful



(9 3 5 240)(9,3,5,240)
Concatenation idea

Let .:,,,and: 2243212
2

2 FFFF →→+ nn fffff

]|||[ 4321 fffff =

From the Hadamard matrix 

]|||[ 4321 fffff =

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

−−
=⊕⎥

⎦

⎤
⎢
⎣

⎡
== − 1111

1111
1111

,
11

11
,1 210 HHHH nn

⎥
⎥

⎦
⎢
⎢

⎣ −−
−−⎦⎣ −
1111
111111

The Walsh transform F(w) of  f is given by 

]|||[ FFFFFFFFFFFFFFFFF ++++++= ]|||[ 4321432143214321 FFFFFFFFFFFFFFFFF +−−−−+−+−+++=



(9 3 5 240)(9,3,5,240)
• It is possible to construct an  ( )11 22,1,, +− −−− mnmnmn

f ti  h  ⎥
⎥

⎢
⎢ −> 2nm  f  th  t ti  f f  function where ⎥⎦⎢⎣

−> 2
2

m  from the concatenation of four 

( )13 22,3,,2 +− −−−− mnmnmn  functions with nonoverlapping 
Walsh coefficients, if such four functions exist. 
  

• Thus, the search for ( )240,5,3,9  functions is reduced to
finding four ( )48,3,3,7  functions with nonoverlapping
spectrum coefficients. This helps us in reducing thep p g
search space dramatically compared to the direct
search for ( )240,5,3,9  functions 
 

 
• The algebraic degree of such functions is always

maximum (n-m-1) 
  

• Several examples were obtained using PSO optimization 
 



C t ti  f  (10 2 7 488) f tiConstruction of a (10,2,7,488) function
 
• We can’t specify the distribution of the Walsh• We can t specify the distribution of the Walsh

spectrum for f . 
 

• We only know that the Walsh spectrum of )488;7;2;10(• We only know that the Walsh spectrum of )488;7;2;10(
Boolean function satisfy the following constraints: 

 
⎧ ≤ 2)(if0 ωwt

             
( )

⎩
⎨
⎧

>
≤

=
2)( if  ,48or  32,16,0
,2)(if                  ,0

ω
ω

ω
wt
wt

F
 

  
      But we can’t determine their distribution. 



(10 2 7 488)(10,2,7,488)
 
• Direct construction is ineffective because of the super-• Direct construction is ineffective because of the super-

exponential increase in the search space which grows
as 10242 22 =

n

.  
  
• Even if the search space is constrained to the set of

RSBFs, the search space is still relatively large )2( 108 .  
  



(10 2 7 488) B k t  t ti(10,2,7,488) – Back to concatenation
• Our main observation is that the search space can be

reduced dramatically by noting that a )488,7,2,10(
function f may be constructed by concatenating

2
1

222
1

21 : and : ZZfZZf nn →→ −−  that satisfy the followingy g
constraints: 
 

⎧ ≤1)(if0 ωwt

                     
( )

⎪
⎩

⎪
⎨

⎧

>≤
=≤
≤

=
2)(if48
,2)( if  ,24
,1)(if      ,0

ω
ω
ω

ω
wt
wt
wt

Fi
 

⎩ >≤ 2)(if ,48 ωwt

                                  2,1=i . 



(10,2,7,488) – our search procedure( , , , ) p
 Obtain a 9-bit RSBF 1f  that satisfies the above
constraints using the following cost function. 

   ( ) ( )
( )

( )
( )

( ) { }
( )

( ) 2
1

24,16,8
,2|

2
1

1|

2
111 32maxcos

1

1

−++= ∑∑
∉
=≤

ωωω
ω

ω
ωωωω

FFFft
F

F
wtwt  

          where 9Z∈ω            where 2Z∈ω . 
 

 Once 1f  is found, Obtain a 9-bit RSBF 1f  that 
minimizes the following cost function  minimizes the following cost function. 

   ( ) ( )
( )

( ) ( )
( ) ( )

( ) 2
2

,2|

2
21

1|

2
222 32maxcos

2

−+++= ∑∑
=≤

ωωωω
ωωωωω

FFFFft
Fwtwt

 

         where 9
2Z∈ω           where 2Z∈ω . 

 
 Test if [ ]21 | fff =  is a function, if the search for

2f  under certain 1f  failed after certain number  2f  under certain 1f  failed after certain number, 
go to step 1 and find another 1f . 



Conclusion and open problemsConclusion and open problems

Th  i   h thi     B l  There is no such thing as a secure Boolean 
function.

There may be functions that are appropriate to be 
used in particular contexts to give secure system Protocolsused in particular contexts to give secure system.

Almost every Boolean function paper has a list 
of open problems 

Some are very specific 

Protocols

Algorithms

P i i iSome are very specific 
e.g., find (8,0,7, 118)  

More work is needed
at the interface bet een s mmetric algorithms 

Primitives

at the interface between symmetric algorithms 
and Boolean function layers  
constructions of Boolean functions with 
implementation constraintsp


