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Motivation

® Hierarchical subdivisions of Cryptography
® Protocols (e.g., Needham Schroeder)

Produce solutions for cryptographic problems

* Algorithms (e.g., AES)

Used to construct protocols -

P €s

® Primitives

Used to construct algorithms

® Boolean functions
Constitute one of the basic primitives for symmetric key cryptography

Strong connection between cryptanalytic attacks and the properties of
the underlying Boolean functions

Some attempts for use in public key cryptography




Classical examples for stream ciphers
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Classical examples for Block ciphers
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Boolean Functions

* A Boolean function in n variables f: " » F,
® Multiple-output Boolean functions f: F) — F)"

® Also known as

S-Boxes

Vectorial Boolean functions

® B,, :thesetof“Boolean” functions f: F — F)"

n,m
S |Bnm |: 2m2"

e Exhaustive search is not an option




Boolean function Representation

Truth Table
x| x| flx, %)
0] O 1
0] O 1
0 1 1
0 1 0

S x,) =1+ xx,

Algebraic Normal Form (ANF)

S, Xy,,X, ) =ag +a, X, +ayX, ++a, X, +a,X X, + AaX X,

+...+... +a12mnx1x2...x

flx) = @ ar (H;}_ri)
n}

IC1,..., il

n

* Exists and unique
*The ANF degree is affine invariant

* Evaluation requires O(n2") operations




Walsh-Hadamard Transform

* F(w)= D (=1 where w-x =wx, +-+w,x,
xeF,

® Almost all cryptographic properties can be expressed in terms of

the WHT

* Can be evaluated in O(n2") operations

e What is the best representation?
e TT, WHT, or ANF

° Example:
o ANFD

D owy(f)=Hx e By | f(x) # 0}




Graph Representation: Quadratic
functions

® Boolean functions with only quadratic terms
® can be represented by an undirected graph with n nodes

® An edge between node i and j exists iff @, =1 in the ANF of f

® Boolean functions corresponding to isomorphic graphs

belong to the same affine class

® Example  f(x,,x,,x5,X,) = XX, + XX, + X,0X; + X,X, + XX,

(0
050
o




Definitions

Connected Graphs Regular Graphs

e A graph in which any two e A graph in which every
vertices are connected by a vertex has the same degree
path is called a connected is called a regular graph
graph.




Strongly Regular Graph

A graph G is strongly regular if there exist

nonnegative integers e and d such that, for all
vertices u,v, the number of vertices adjacent to

both # and v, 6(u.v) is given by

5(/1"/):{

e, If 1 and v are adjacent
d, otherwise

. node 0 and 1 are adjacent and have O common
neighbours =e=0

o ° node 0 and 2 are not adjacent and have 2
common neighbours =d =2




Graph Spectrum

® Given a graph G and its adjacency matrix A, the spectrum of
G is the set of the eigenvalues of A, which are also called

eigenvalues of G.

® Isomorphic graphs have the same spectrum




Graph Representation: General case

o A general Boolean function can be associated with a Cayley graph
Ve= FE}
E, ~{(wu) e F{ x F | f(w®u) =1}

® There is a 1-1 relationship between the graph eigenvalues and the
Walsh coefficients: 4 =2"F(i)




Example:

® Truth Table:
fx) = [0011]
® Walsh Transform: F(@)=2" ZX F(x)(=1)**
Fl@ = [20-20]
® Adjacency Matrix:
0 0 1 1
0 0 11
A=
1 1 0 0
110 0

° Eigenvalues:

A= [2002]

Associated Cayley Graph




Example

® Truth Table:

f(x) = 0O1110010]
® Walsh Transform:
F(w) = [4 0-2-22-20 O]
° Adjacency Matrix:
0 1 1 1 0 0 1 O]
1 0 1 1 0 O 0 1
1 1 0 1 1 O 0 O
Lt 1100100
/o001 0 0 1 1 1
O 0 01 1 0 1 1
1 0 0 0 1 1 0 1
01 0 0 1 1 1 O] Associated Cayley Graph

° Eigenvalues:

A =[2-2-20002 4]




1-1 Correspondences with Polynomial
Functions and Periodic Sequences

Polynomial
Trace . Functions
Representatlon Lagrange
(IDFT) ‘

8 terpolation

fion Vector

Space

Periodic

Boolean

Sequences Functions
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Example

Truth Table
RO
\ 15 1 15 15 12 8 10 8 12

. Sx) 0 1 8 12 10 1 10
Interpolatlon

Evaluation

Corresponding Polynomial Function
GF(2*)definedby f(x) =x" +x +1= s(x) = x°

GF(2*)defined by f(x) = x* + x* +1=

s(x)=x+x° +7x° +15x" +5x° +14x° +14x° + 2x° + Tx™ + 9x™




Cryptographic properties of Boolean
functions

® Balance

® Correlation immunity

* Resiliency

* Nonlinearity

* Algebraic normal form degree

© Algebraic immunity degree

~




ANFD
T T LFSR

® 1 X1 XCf,

| ||

—| Sn—1 fe Sn—L+1| Sn— L —

Using Berlekamp Massey algorithm, Filter
the initial value and the connection Polynomial of Function
the LFSR can be deduced using 2L consecutive bits

o= @ o (I1-)

Ic{1,....n} 1=y

Output will have an equivalent length

1)

C1.The ANFD, d, should be as high as possible (
(g
n}




Resiliency

© Combining functions must be balanced

® If / remains balanced if we fixed up to m of its input

coordinates, then f is called m-resilient

® In terms of WHT LFsRi).
F (W) — O LFSR2 H::“ 1 Output
______ P
e
forallw e F, suchthat w, (w) < m —

C2.The resﬂiency degree m should be as high as possible

* Siegenthaler bound (c1 & c2) :

m+d <n,
m + d < n—1for balanced functions




Nonlinearity

® The nonlinearity of f is the minimum hamming distance

between f and the set of Affine functions

® In terms of WT
n-1 1
NL, =2 —Emax | F(w) |
weF,'

C3. NL should be as high as possible

e Sarkar-Maita Bound (C2 & C3): NL<2"'-2""




Bent functions

® Bent functions are functions that
® have flat WHT spectrum
® achieve the maximum possible nonlinearity

® Letfbe a bent function and G its associated graph. Then, G
is strongly regular graph and has the additional property
e=d.

* Ditferent generalizations
® Carlet Hyper-bent functions
® Yousst and Gong Hyper-bent functions
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Correlation Attack of Vectorial Stream Ciphers

LFSR

Vectorial

Vectorial
Boolean

Boolean

Function :
Function

Zl 22 z

Pr(b-z=w-x)=Pr(bz,®..®bz =wx, ®..®w x,

® For correlation attack to succeed, we require Bias =| Pr(b-z = w- x) _% to be high
where z=f(x) is the output. i.e. probability is far away from 2.

® Thus the nonlinearity:

N,=2"" —%IE%%( > (=1)"/®* should beas highas possible

n
xek,

N\
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Unrestricted Nonlinearity

X1
LESR 1

Vectorial
Boolean

Function

® Since z is known, the attacker can consider

Pr(g(z) =wx; ®©..©&w,x,)=Pr(g(z) =w-x).
which is linear in x for any Boolean function g(-).

* For the attack to succeed, we require
Bias =| Pr(g(z) = w-x) —% | to be high
*Thus, the unrestricted nonlinearity

UN, = 2”‘1—1 max

2 w#0 g()

Z ( 1)g(f(x))®w x

should be as high as possible




Algebraic Attacks

® Initial state s =(s,,s,,-s, ;)

® The output stream is given by

LFSER:
- Length m
0o = f(SgsS1, 48, 1), \

0, :f(L(SmSl"”’Sn_l)), n<m

Output

0p = f(L (59,81,++,5,4))

o Algebraic attacks try to efficiently recover s from the output
sequence O




Algebraic Attacks

® In general, solving the system of multivariate equations is NP
complete (even if all the equations are quadratic)
® Linearization

e Grobner Basis

° If / has ANFD d, then £(L*(sy,s,,--+,5,,)) would roughly

have (Zj monomials

* Using a simple Linearization approach, S can be recovered by

solving a system with (Z} variables; CompleXityz(st
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Linearization Example

System of nonlinear equations: 0 = M ==z
réydry = 1 0 = My=y
yory = 1 1 = My=uxy
New Variables: M/ := », My =y and M == 1y Solution doesn’t make sensel

New system of linear equatlons

Mia@a My My = 1
1

My & My =
: ) 0 = M=z
Applying Gauss reveals: 1 = My=y
My =0 0 = Mg=uxy

Moya My = 1
Solution correctl

= Two solutions:

My =0, My =0, Mg =1
My =0, My =1, My =




Algebraic Attacks

® If one can find a (non zero) function g of degree d g<df such

that
gxf=0o0r gx(1+ f)=0

n n
then the number of unknowns can be reduced to [ ] < ( 7 j
S

® eXtended Linearization (XL algorithm)




Algebraic Immunity

* Al(g) is the lowest degree of any non zero g such that
gxf=0o0r g*(l+7)=0

* Some argues that it should be called annihilator immunity
o AI(f)<[4]
® For even n, Al is almost always ~ 2

® For odd n, Alis almost always ~ 1

N

A1-2( 4 _
* Alimplies a lower bound on nonlinearity =~ NL > 2 Z(n . 1)

i=0 \ !




Complexity of finding Al
* Compute the annihilator space of degree <d

® Number of coefficientsin g ; _ (Z}(Z}J{Zj

® Vxsuchthat /(x) =1— linearequation g(x) =0

® Number of equations: wy (f)

* Gaussian elimination requires O(2* k)

® Meier, Pasalic and Carlet: O(%’)
e State of the art (Armknecht et. al): O(k’)




Examples for well known constructions

® Maiorana-McFarland’s (MM) constructions (concatenation

of affine functions)

S(x,y)=x-9(y)+g(»),
where ¢: F,)"? - F}'"? g:F)'* > F,
fisbentiff gisa permutation

e Similar constructions for resilient functions

S, y)=x-9(y)+2g(»),

where n=r+s,¢.F'* > F/,g:F, > F,,
w(@(y)) >k = fism > kresilien with

2™ 2" A< NL<2™ - 2’"—1f\/ﬂ ,

where A = max# ¢ (a)

acF,




Other Algebraic constructions

* Power functions x? over GF(2")

i d weight degree nonlinearity alg. immunity

g 3 128 b 112 4

8 30 (Kasami) 128* & 114 4

a9 &7 (Kasami) 256 4 224 4

9 50 256 5 240 b

a9 115 256 b 240 &

10 241 (Kasami) h12 5 420 5

10 362 512 5 420 b

10 31 (Dillon) r12* 0 485 5

10 | 339 (Dobbertin) | 512* 9 480 5

i1 31k 1024 & ag2 6

12 | 993 (Kasami) | 2048 11 2000 6

12 63 (Dillon) 048* i1 2000 6

12 636 angat 11 2000 &

13 203 | Kasami) 4096 & 4032 [

13 030 4006% iz 4030 7

14 4033 (Kasami) 5192 [ 2064 7

14 127 (Dillan) s102* i3 20as 7
n d weight degres nonlinearity alg. immunity
B -1 32 b 24 3
7 -1 4 & B4 4
8 -1 128 7 112 4
9 -1 256 2 234 4
10 -1 K12 9 420 5
11 -1 1024 10 0 5
12 -1 2048 11 1924 5
13 -1 4005 12 4006 f

4| 1| s 13 2064 6>




Heuristic optimization based
constructions

® Previous algebraic approaches may not always allow the

system designer to achieve optimal constructions
e Exhaustive search is not an option for n>38

° Cryptographically rich Boolean function classes

® Limited search space but rich in cryptographically good

functions

* Spectral Inversion
Possible cost functions Z | Z; Flw)F(w @ s)).
Iy

s LAT gnC E*




Cryptographically rich classes

® Symmetric functions (too restrictive)
S (g X,) = f (X000 Xy ) TOr all permutations o
® Rotation symmetric functions
(P (x,...,x)) = f(x,,...,x, ) forall cyclicshifts p*
® Dihedral Symmetric Boolean
® Functions invariant under the action of Dihedral group D,

® In addition to the cyclic shift, D, includes a retlection operator

T (X, X0 X,) = (X, 00y X, X;)




4 N
u---m-mm

128 512 1024

CRSBF 4 6 8 14 20 36 60 108
Comm | 4 6 8 13 18 30 46 78
Com | £ 5 6 7 8 9 10 11
2CSBF
CBF =2"
Creer = Z¢(k)2k

kln

Cor =n+1




Solving two open problems

® Let (n,m,d,nl) denote
® n-variable
® m-resilient
® ANF degree, d

° Nonlinearity nl

® The existence of (9,3,5,240) and (10,2,7,488) has been an

open problem.

® Using a heuristic search, we are able to construct several

examples for such resilient functions.




Construction of a (9,3,5,240) function

* Consideration of the Search Space
® BF search space is too large (2°'?)

® RSBF space is moderate (2% ) but it was proved that no such
RSBF function exists

® Spectral inversion: res(f)=m = |F(»)=0mod 2"

The spectrum of any (n, m,—2" " — 2m+1) function is necessarily a three-
valued function (Plateaued) (O,izn“z) , m> E— ZJ

Direct spectral inversion

|F(w)| B {g’or 32 :: :ZEZ)’; i 2

did not prove to be useful




(9,3,9,240)

® Concatenation idea

Let f:F/ S Fyand £, 1o, far fa i Fod > F,.

f=halral f3l /4]

1

From the Hadamard matrix , _; , _ {1 } OH ., H, -

The Walsh transform F(w) of f is given by
F=[R+FL+B+F | -F+FR-F R +F,-F-F | R

N

1 1 1 1]
1 -1 1 -1
1 1 -1 -1

1 -1 -1 1]

—F, -3+ Fy]

/




N

(9,3,9,240)

e It is possible to construct an (n,m,n—m—l,Z”‘l—Zm”)

n
function where ””’>b‘2J from the concatenation of four

(n—2,m,n—m—3,2”‘3—2m”) functions with nonoverlapping
Walsh coefficients, if such four functions exist.

e Thus, the search for (9.35240) functions is reduced to
finding four (7.3348) functions with nonoverlapping
spectrum coefficients. This helps us in reducing the

search space dramatically compared to the direct
search for (9,35,240) functions

e The algebraic degree of such functions is always
maximum (n-m-1)

e Several examples were obtained using PSO optimization




Construction of a (10,2,7,488) function

e We can’'t specify the distribution of the Walsh
spectrum for f.

e« We only know that the Walsh spectrum of (10;2;7;488)
Boolean function satisfy the following constraints:

Q) =
0,16,32 or 48, if wt(w) > 2

But we can’t determine their distribution.




(10,2,7,488)

e Direct construction is ineffective because of the super-
exponential increase in the search space which grows

as 22" _ 21024 .

e Even if the search space is constrained to the set of
RSBFs, the search space is still relatively large (2).




(10,2,7,488) - Back to concatenation

e Our main observation is that the search space can be
reduced dramatically by noting that a (10,2,7,488)
function /fmay be constructed by concatenating

fiZy7 > Z,and f,:Z; > Z, that satisfy the following
constraints:

-

0, Ifwt(w)<],
F(w)=1<24, if wt(w) =2,
<48, If wt(w)>2
i=12




(10,2,7,488) - our search procedure

e Obtain a 9-bit RSBF /, that satisfies the above
constraints using the following cost function.

cost,(f;)= Z\F o+ Y|E(o )(+rp(a>)<\Fl(a))—32\2

olwt(o olwt()=2,
|F1()e{8.16,24]

where weZ; .

® Once /f, is found, Obtain a 9-bit RSBF /, that
minimizes the following cost function.

cost,(f,)= Z\F o) + Z\F w){2+r280>)<\F2(w)—32\2

olwt(w olwt(w)=2,

where we Z; .

e Test if f=[f.1/,] is a function, if the search for
/> under certain f, failed after certain number,
go to step 1 and find another /.




Conclusion and open problems

® There is no such thing as a secure Boolean
function.

® There may be functions that are appropriate to be
used in particular contexts to give secure system.

e Almost every Boolean function paper has a list '
of open problems

® Some are very specific P
e.g., find (8,0,7, 118)

® More work is needed

® at the interface between symmetric algorithms
and Boolean function layers

® constructions of Boolean functions with
implementation constraints




