
2008 CRM-FIELDS-PIMS PRIZE WINNER: Allan Borodin 

 

 

Allan Borodin of the University of Toronto has been awarded the 2008 CRM- Fields-PIMS prize. 

According to the citation “Professor Borodin is a world leader in the mathematical foundations of 

computer science. His influence on theoretical computer science has been enormous, and its scope 

very broad. Jon Kleinberg, winner of the 2006 Nevanlinna Prize, writes of Borodin, “he is one of 

the few researchers for whom one can cite examples of impact on nearly every area of theory, and 

his work is characterized by a profound taste in choice of problems, and deep connections with 

broader issues in computer science.” Allan Borodin has made fundamental contributions to many 

areas, including algebraic computations, resource tradeoffs, routing in interconnection networks, 

parallel algorithms, online algorithms, and adversarial queuing theory.”  

 

Borodin received his B.A. in Mathematics from Rutgers University in 1963, his M.S. in Electrical 

Engineering & Computer Science in 1966 from Stevens Institute of Technology, and his Ph.D. in 

Computer Science from Cornell University in 1969. He was a systems programmer at Bell 

Laboratories in New Jersey from 1963-1966, and a Research Fellow at Cornell from 1966-1969. 

Since 1969 he has taught with the computer science department at the University of Toronto, 

becoming a full professor in 1977, and chair of the department from 1980-1985. He has been the 

editor of many journals including the SIAM Journal of Computing, Algorithmica, the Journal of 

Computer Algebra, the Journal of Computational Complexity, and the Journal of Applicable 

Algebra in Engineering, Communication and Computing. He has held positions on, or been active 

in, dozens of committees and organizations, both inside and outside the University, and has held 

several visiting professorships internationally. In 1991 Borodin was elected a Fellow of the Royal 

Society of Canada.  

 

 

The discipline of computer science has been an exceptionally successful blend of engineering and 

mathematical science with a healthy dose of human factor and aesthetic issues. Allan Borodin has 

made significant contributions to many diverse aspects of the discipline, with a major focus on the 

more mathematical areas.  A common theme in his research the exploration of fundamental 

questions that should have well-understood explanations but seem to often defy answers to even the 

most basic forms of these questions. As a result Borodin has often been at the forefront of 

developing new models and problem formulations that have become standard frameworks for 

studies in computer science.  

 

 

Perhaps the most basic scientific aspect of computer science is to understand the intrinsic 

limitations of what can and what cannot be efficiently computed in various models of computing 

with respect to various measures of complexity. This study is the heart of complexity theory. The 

other side of the complexity theory coin is the design and analysis of algorithms. Borodin has been 

involved in both sides of this coin since his first publication in 1969. In his Cornell PhD thesis, 

Borodin studied the time complexity classes introduced by Hartmanis and Stearns and the more 

abstract complexity measures axiomatized by Blum. He showed that “constructible” bounding 

functions as used by Hartmanis and Stearns to develop complexity hierarchies are necessary in the 

sense that for any complexity measure (be it time, space, etc.) there are arbitrarily large gaps 



(where no new functions are being computed) created by non-constructible bounding functions 

[Bor72].  Another thesis result (with Constable and Hopcroft) showed that time complexity classes 

are dense [BCH69].  

 

 

Borodin soon became more focused on the complexity of specific functions and, in particular, what 

we now call “algebraic complexity theory”. The complexity world was basically unchartered 

territory at the end of the 1960s although many surprising and widely applicable results (for 

example, the Fast Fourier Transform and fast integer multiplication) were developed outside the 

confines of a formal theory. A number of results accelerated the development of complexity theory. 

One such result was Cook’s formulation of the class NP and the identification of NP complete 

problems which became and still remains the main source of evidence that many common 

combinatorial problems cannot be solved efficiently (i.e. within polynomial time). On the other side 

of the coin, Strassen’s surprising result that matrix multiplication can be computed within O(n 
log

2

7
) 

≈  O(n
2.81

 ) arithmetic operations showed that our common intuition and beliefs cannot be trusted 

(the obvious method requires n3 multiplications). Following Strassen’s dramatic result, Borodin 

proved a number of results helping to establish the field of algebraic complexity. Resurrecting an 

old question raised by Ostrovsky, Borodin showed that Horner’s rule for evaluating a polynomial is 

uniquely optimal in being the only method that can achieve the optimal 2n arithmetic operations. 

Since (even with preconditioning) n/2 multiplications/divisions and n additions/subtractions are 

required for one polynomial evaluation for most degree n polynomials, how many operations are 

needed to evaluate a degree n polynomial at (say) n arbitrary points? When the evaluation  

points are the powers of a suitable primitive root of unity, the FFT performs these evaluations in 

O(n log n) operations rather than the O(n
2
 ) operations required if one evaluates at each point 

individually. By reduction to Strassen’s fast matrix multiplication, Borodin and Munro showed that 

O(n1.91 ) operations are sufficient [BM71]. Then Borodin and Moenck showed that Ω (n log n) non 

scalar multiplications and O(n log
2
 n) total operations are sufficient [BM74], which remains the 

best asymptotic bound for total operations (and matched by Strassen’s algebraic geometry based 

Ω (n log n) lower bound for the number of non scalar multiplications). The Strassen bound uses the 

Bezout Theorem on the degree of an algebraic variety to generalize the obvious fact that an n
th

 

degree polynomial requires log n multiplications (since the degree can at most double following a 

multiplication).  Using the FFT, two n th degree polynomials can be multiplied in O(n) non scalar 

multiplications and O(n log n) additions. Is there an analogue to the degree bound so as to establish 

lower bounds on the number of additions to compute polynomials? Borodin and Cook [BC76] 

show that the number of real roots of a polynomial is bounded by the minimal number of additions 

used to compute the polynomial. The Borodin and Cook lower bounds were improved by Risler 

using results from real algebraic geometry. Beyond these research contributions, Borodin and his 

first PhD student Ian Munro wrote the seminal text book [BM75] in the area of algebraic 

complexity and it remained the most authoritative source for approximately 20 years.  

 

Another area of interest for Borodin concerns parallel computation and network routing. How does 

parallel time complexity relate to the more standard complexity measures of time and space? 

Following the known results relating sequential time with uniform circuit size, Borodin showed that 

the space measure is directly related to uniform circuit depth, a basic measure of parallel 

complexity. Unlike the situation for classical sequential time studies, there are alternative  



models of parallel computation, including various parallel RAM models and interconnection 

network models. In order for an interconnection network to be able to simulate a RAM, the network 

must be able to simply and efficiently rout simultaneous messages. Oblivious routing schemes are 

simple in the sense that the path of each message is independent of the routes of other messages. 

Valiant showed that by obliviously routing to a random intermediate node, any permutation could  

be routed in time O(d) on a d-dimensional hypercube. This is asymptotically optimal since d is the 

diameter of the network. Borodin and Hopcroft [BH85] showed that this use of a random 

intermediate node is necessary in the following strong sense: in any degree d network with n nodes, 

for any deterministic (i.e. non randomized) oblivious routing algorithm, there exists a permutation 

that will have a bottleneck node forcing the routing to take at least Ω n /d
3/2

 time. Borodin was 

also the co-designer of some surprising parallel algorithms, including (with von zur Gathen and 

Hopcroft) [BvzGH82] a randomized parallel greedy algorithm to derive a log
2
 n parallel time (i.e. 

depth of arithmetic circuit) algorithm for computing the rank of an n × n matrix, and a log log n 

algorithm for merging two lists on a CREW (Concurrent Read Exclusive Write) RAM model.  The 

work on packet routing led to a new area of research. Packet routing can be viewed as a queuing 

system in which the edges of the network become the processes and one can study the queueing 

effects in terms the nature of the network and/or the scheduling rules used by the nodes of the 

network. In this setting, input requests (e.g. oblivious packet paths or requests for packet 

transmission along any path from source to target) are characterized more by burstiness rather than 

by any standard probabilistic distribution. Furthermore, the processing time (transmission of a 

single or a bounded number of packets along an edge) is usually considered to have a well-defined 

time. Borodin, Kleinberg, Raghavan, Sudan and Williamson [BKR
+
01] modeled this burstiness by 

an adversarial model and developed an area named “adversarial queuing theory”. There are some 

natural queuing limitations on the stability (i.e. bounded queue sizes and time to complete a 

transmission) with the main limitation (say in oblivious routing) being that the rate of requests for 

an edge cannot exceed the processing rate of the edge. Borodin et al began the study as to which 

networks are always stable at a given rate (independent of the scheduling rule) and which 

scheduling rules are always stable (independent of the network). Adversarial studies of packet 

routing and other queueing systems have led to a number of surprising results (e.g. the instability of 

FIFO at any rate for certain networks as shown by Bhattacharjee and Goel). 

  

While complexity theory has been very successful in many aspects (e.g. understanding the relation 

between complexity measures, establishing complexity based cryptography, utilizing hardness to 

develop pseudo random generators, the development of new notions of “proofs” including 

interactive proofs and probabilistically checkable proofs), the major limitation of the field thus far 

is in the inability to prove complexity impossibility results for “explicitly defined natural problems” 

(for example, NP search and optimization problems). More specifically, non-linear time bounds (on 

a sufficiently general model of computation) or space bounds greater than log n still elude us. 

Perhaps then the simplest barrier to break is to exhibit a problem which cannot be simultaneously 

computed in small time and space. Borodin lead a group of coauthors [BFK
+
81] to prove the first  

time-space tradeoff result for comparison based sorting in what can be said to be the most general 

model for such a result. They considered comparison branching programs which are DAGS where 

nodes are labelled by comparisons “ai ≤  aj ?” between elements from a given “read-only” input set 

of n elements. In this model, edges are labelled by sequences of input elements that are being 

output if this edge is traversed. The complete sequence of outputs along any path defines the output  



of the program. In this non-uniform model (like circuits, a different program is allowed for each n), 

time is the length of the longest path (or expected path length if one were considering average case 

complexity), and space is the logarithm of the number of nodes in the DAG (i.e. the information 

theoretic lower bound on the memory being used). In contrast to list merging, which can be 

computed simultaneously in linear time and O(log n) space, Borodin et al show that the time space 

product T · S =  Ω (n
2
); that is, any small space method must require significantly more time than 

the optimal n log n bound achievable by methods such as merge-sort. (For all space bounds S(n) 

between log n and n, a corresponding upper bound can be obtained.)  

 

This paper [BFK
+
81] was seminal and started a long and continuing research effort to derive time 

space bounds for natural problems in appropriate models.  The sorting tradeoff was soon followed 

by a similar comparison branching program tradeoff for a decision problem, namely the element 

distinctness problem.  The initial element distinctness tradeoff was by Borodin et al [BFadH
+
87], 

and it was then improved by Yao. These comparison branching programs (where the algorithm 

does not have access to the encoding of the input elements) leaves open the possibility that the 

corresponding Boolean problems (e.g. say encod-ing integer inputs in binary) can be computed 

using simultaneously small time and space. This consideration led Borodin and Cook [BC82] to 

introduce the R-way branching program model, where now inputs are considered to be inputs in 

some range [1, R], and branching program nodes are of the form “ai = ?”, with up to R branches 

corresponding to each of the possible values of ai . Time and space are defined as before. Borodin 

and Cook showed that sorting n numbers in the range [1, n
2
 ] required T · S = Ω (n

2
), proving a 

very strong tradeoff result, since the total binary encoding length of the input is only O(n log n) 

bits. This represents the first negative result for an explicit (polynomial time computable) Boolean 

problem in a completely general model, albeit not a decision problem. It took approximately 20 

more years to establish negative results (of a much weaker form) for a Boolean decision problem.  

 

In the mid 1980s, Borodin began working on the topic of online approximation algorithms which 

became known as competitive analysis, whereby the performance of an online algorithm (making 

decisions for each input as it arrives) is compared to the performance of an optimal solution with 

complete knowledge of the entire input. There had been a number of earlier important results 

concerning online algorithms for specific problems that need not necessarily be considered as 

online problems (for example, Graham’s study of the makespan problem, Kierstead and Trotters 

online interval colouring, and Yao’s study of online bin packing). Sleator and Tarjan proposed 

competitive analysis (in contrast to distributional studies) for problems which were inherently 

online such as paging and list accessing. Borodin, Linial and Saks [BLS92] then proposed an 

abstract online problem framework called metrical task systems (MTS) which was soon followed 

by the k-server model of Manasse, McGeouch and Sleator. The introduction of competitive analysis 

for online problems and these abstract problem formulations spawned a wealth of research activity 

that has had an impact well beyond online problems. For example [BLS92] provides an optimal  

2n – 1 competitive ratio bound for deterministic algorithms for any n-state MTS. It also introduced 

randomized algorithms in this context showing that the uniform metric system had a 2Hn  ≈  2 ln n 

randomized competitive ratio. This led the way to a randomized paging algorithm by Fiat et al and, 

moreover, led to interest in trying to derive randomized algorithms for general MTS and k-server 

problems. In this context Bartal introduced Hierarchically Separated Tree spaces (HSTs) for which 

O(log n) randomized algorithms exist and furthermore arbitrary metric spaces can be efficiently 

embedded into such HSTs. The use of HSTs has now become a standard tool in combinatorial 



approximation.  

 

Beyond the seminal MST work, Borodin was influential in a number of cen- tral results concerning 

online competitive analysis. Borodin et al [BIRS95] introduced a variant of competitive analysis so 

as to model the locality of reference exhibited by (for example) paging requests. Another landmark 

paper introduces “request-answer games”, which provide a framework for defining most known 

online problems. In this very abstract setting (which, for example, includes the MTS and k-server 

settings), Borodin and coauthors [BDBK + 94] relate the power of different adversarial models for 

randomized online algorithms; namely, they identify the more standard oblivious adversary (as 

used in offline computation) where the adversary generates the input request sequence without 

knowledge of the algorithm’s coin tosses, and adaptive adversaries where the adversary adap- 

tively creates the input sequence by observing the coin tosses and actions of the online algorithm. 

For adaptive adversaries, the adversary (acting also as the “optimal benchmark”) can either play the 

game online or play the game in hindsight as an offline player. A number of randomized algorithms 

were being studied relative to (not so precisely defined) adaptive adversaries. Ben David et al show 

that algorithms competing against online adaptive adversaries can be simulated by algorithms 

competing against offline adaptive adversaries which in turn can be simulated by deterministic 

algorithms thereby showing that randomization can only yield significantly improved competitive 

ratios when formulated as algorithms competing against oblivious adversaries. 

 

Finally one of Borodin’s most influential contributions to online analysis is his text [BEY98] with 

former student Ran El-Yaniv. The text (published in 1998) remains the authoritative reference for 

this area, although many significant results have followed its publication, including a number of 

results addressing questions raised in the book.  

 

Borodin has made significant contributions to a number of other aspects of algorithm analysis. One 

paper with Ostrovsky and Rabani [BOR03] provides the first memory-search time results for 

problems (e.g. nearest neighbour and partial match search) in high dimensional spaces, proving that 

for deterministic algorithms some form of exponential “curse of dimensionality” must exist for a 

widely studied geometric search model.  

 

Borodin’s most recent research area has been an area he has essentially been creating, namely the 

attempt to study the power and limitations of “simple algorithms”, especially (to date) for search 

and optimization problems. While we equate efficient algorithms with time and/or memory 

efficiency, there are other important aspects to algorithm design. It is a rather remarkable fact that 

for over 70 years we have a well-accepted formalization (i.e. the Church -Turing thesis) for the 

intuitive concept of “computable function” and the associated concept of an algorithm. And if we 

stay within classical computing models (in contrast to say quantum computers) we have a 

reasonably well-accepted definition of “efficiently computable”. But we often want simple 

understandable algorithms, at least as starting points or benchmarks for developing more 

sophisticated, complex algorithms. That is, we tend to use a small set of basic algorithmic 

paradigms as a “toolbox” for an initial (and sometimes the best known or even optimal) method for 

solving large classes of problems in many settings. These basic paradigms include greedy 

algorithms, divide and conquer, dynamic programming, local search, primal dual algorithms and 

IP/LP rounding. Surprisingly, although we intuitively understand what these concepts mean, rarely 



do we attempt any precise formulation, and a precise formulation is necessary if one is to gain any 

insight into the ultimate power and limitations of these methods.  

 

The long standing and significant study and use of greedy algorithms provides a great example of 

an algorithmic paradigm that seems so natural and obvious that no definition seems necessary. It is 

hard to think of a computational area where some concept of greediness does not appear. The 

elegant results of Edmonds, Korte, Lovasz connecting matroids and greedoids with the optimality 

of “the” natural greedy algorithm for certain set systems was the starting point for a number of in- 

sightful results concerning optimal greedy algorithms. But greedy algorithms are mainly used as a 

heuristic or to obtain approximation results. Borodin, Nielson and Rackoff [BNR03] introduce the 

priority algorithm framework as a model for “greedy-like” optimization algorithms in almost any 

setting. We can think of this framework as an offline extension of online algorithms. An input to a 

problem is a set of items (for example, jobs in a scheduling problem, vertices in a graph problem, 

propositional variables in an SAT problem) and a priority algorithm considers and makes decisions 

about items one by one but now in an order determined (in advance or adaptively) by the algorithm 

rather than the order given by (adversarial) nature. Of course, the trick here is to formulate what 

orderings a “reasonable” algorithm can use. For example, it would make no sense to allow the 

algorithm to compute an optimal solution and a corresponding optimal order that allows the 

algorithm to produce the optimal solution. One approach would be to resort to complexity 

considerations and say that each item is chosen within some acceptable time. But that would bring 

us back to our current inability to prove limitations based on time complexity. Instead the priority 

framework relies on a simple to state concept of a local ordering. In fact, the allowable orderings 

are (at each iteration in the case of adaptive priority algorithms) those satisfying Arrow’s IIA 

(independence of irrelevant attributes) axiom. Whereas in social choice theory this axiom is 

controversial, for greedy-like algorithms the concept allows great generality while still being 

amenable to analysis. And what does this have to do with greediness? In the priority framework it 

is not the ordering decisions that are greedy but rather (for greedy priority) it is the decisions being 

made for each input item that can be construed as greedy (say in the sense of “living for today”) 

with respect to the given objective function. There are a number of results showing the limitations 

of such priority algorithms in different domains, starting with the initial scheduling results of 

Borodin, Nielson and Rackoff.  The priority framework is also the starting point for more powerful 

paradigms, such as some simple forms of primal dual algorithms using a reverse delete step, simple 

dynamic programming and backtracking. For example, the work of Borodin and coauthors [ABBO
+
 

05] shows why DPLL style backtracking algorithms cannot solve 3SAT search and has limits to 

approximating Max2Sat but can solve 2SAT. They also show that the form of dynamic 

programming used for interval scheduling and knapsack algorithms have limitations. In particular, 

optimal dynamic programming algorithms for weighted interval scheduling on m machines must 

suffer a curse of dimensionality with respect m.  This recent algorithmic design work reflects the 

style of an extraordinarily productive and creative career. 
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