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INTERACTING MANY-BODY QUANTUM SYSTEMS

x = (x1, x2, . . . , xN) ∈ R3N position of the particles.

Symmetric wave function: ψN(x1, . . . , xN) ∈ L2(R3N)

HN =
N∑
j=1

[
−∆xj + U(xj)

]
+ λ

∑
i<j

V (xi − xj)

U is a one-body background (“trapping”) potential

V is the interaction potential

i∂tψN,t = HNψN,t, i∂tγN,t =
[
H, γN,t

]
, [A,B] = AB −BA

with γN,t := |ψN,t〉〈ψN,t| density matrix (1 dim. projection).

One particle density matrix:

γ
(1)
ψ (x, y) :=

∫
ψ(x, x2 · · ·xN)ψ(y, x′2 · · ·x

′
N)dx2 · · · dxNdx′2 · · · dx

′
N
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Time-independent BEC in Scaling Limit

HN =
N∑
j=1

[
−∆xj + U(xj)

]
+

1

N

∑
i<j

N3V (N(xi − xj))

Approx Dirac delta interaction with range 1/N (“hard core”)

[Dyson, Lieb-Seiringer-Yngvason, Lieb-Seiringer]

• Ground state energy is given by the Gross-Pitaevskii functional

lim
N→∞

inf spec
HN
N

= inf
ϕ,‖ϕ‖=1

EGP (8πa0, ϕ), a0 = scatt. length of V

EGP (σ, ϕ) :=
∫
|∇ϕ|2 + U |ϕ|2 +

σ

2
|ϕ|4

• Complete condensation in ground state:

γ
(1)
N (x;x′)→ φ(x)φ(x′), φ = minimizer of EGP
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Time Dependent GROSS-PITAEVSKII (GP) Theory

The GP energy functional also describes the evolution:

γ
(1)
N,0 → ϕ(x)ϕ̄(x′) =⇒ γ

(1)
N,t → ϕt(x)ϕ̄t(x

′)

The condensate wave fn. evolves according to a NLS

i∂tϕt =
[
−∆ + U + 8πa0|ϕt|2

]
ϕt, ϕt=0 = ϕ

Many-body effects & corr → non-linear on-site self-interaction

Experiments of Bose-Einstein Condensation: Trap Bose gas and

observe its evolution after the trap removed.

Dynamics: The ground state of trapped BEC is a highly excited

state for the system without traps. GP describes also excited

states and their evolution!

Cannot be completely correct. Now set U = 0.
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HN =
N∑
j=1

−∆xj+
1

N

∑
i<j

Vβ(xi−xj), Vβ(x) := N3βV (Nβx), 0 < β ≤ 1

THEOREM: [Erdős-Schlein-Y, 2008] Assume V ≥ 0 and

V (x) ≤ C(1 + |x|)−5. Suppose the initial state satisfies

γ
(1)
N,0(x, y)→ u0(x)ū0(y), u ∈ H1(R3)

Then for every k ≥ 1 and t > 0 fixed

γ
(k)
N,t → |ut〉〈ut|

⊗k N →∞

i∂tut = −∆ut + σ|ut|2φt, σ =

{
b0 if 0 < β < 1
8πa0 if β = 1

where a0 is the scatt. length of V and b0 =
∫

dxV (x) 6= 8πa0

Adami, Bardos, Golse, Teta: one dim result. Use δ ≤ −∆ in R
and the EY approach.
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SCATTERING LENGTH

(
−∆ +

1

2
V (x)

)
(1− w(x)) = 0 with w(x)→ 0 for |x| → ∞ .

w(x) =
a0

|x|
for |x| → ∞

∫
dxV (x)(1− w(x)) = 8πa0

Dyson’s trial function for ground state:

WN(x) =
∏
j<k

[
1− w(N(xj − xk))

]
States with and without short range structure:

ψN(x) = WN(x)
N∏
j=1

u0(xj), φN =
N∏
j=1

u0(xj)

lim
N→∞

N−1〈ψN , HNψN〉 =
∫
|∇u(x)|2 + 4πa0|u(x)|4

lim
N→∞

N−1〈φN , HNφN〉 =
∫
|∇u0(x)|2 +

b0
2
|u(x)|4
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The theorem for β = 1 holds for ψN and φN .

Our Theorem shows that the local singular structure is preserved

by the N-body evolution for initial state ψN . For product initial

state, it shows that the local structure emerges .

i∂tφN,t = HNφN,t, φN,t=0 = φN

N−1〈φN,t, HNφN,t〉 = N−1〈φN , HNφN〉

→ EGP (b0, u0) 6= EGP (8πa0, u0) = EGP (8πa0, ut)

For product initial state, the GP energy functional (with the

coupling constant 8πa0) does not describe the energy of the

N-body system . But the time dependent one particle density

matrices in a weak limit is still given by the GP equation with

coupling constant 8πa0.
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Mathematically: The convergence of the time dependent density

matrices is so weak that the energy does not converge.

Physically: For states with product initial data, the short scale

behavior will show the characteristic 1−w(N(xi− xj)) structure

after a short initial layer. This lowers the energy of the system

locally. The energy lost was transfered to energy in other scales.
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NONLINEAR HARTREE EQUATION: β = 0, Vβ = V

i∂tϕt = −∆ϕt +
(
V ? |ϕt|2

)
ϕt

Hepp: smooth potential, Ginibre-Velo: use coherent state. Schlein-

Rodnianski apply to states with fix number of particles with

Coulomb potential.

Spohn: bounded potential, BBGKY hierarchy.

Bardos, Golse and Mauser: convergence to hierarchy for Coulomb

case, but no uniqueness nor a priori estimates.

Erdos-Y: Uniqueness of Coulomb case and a priori estimate.

bosonic star (Elgart-Schlein, Frohlich-Schwarz)
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Fundamental difficulty of N-particle analysis (N � 1)

There is no good norm. The conserved L2-norm is too strong.

Let Ψ = ⊗N1 f , Φ = ⊗N1 g, then ‖Ψ−Φ‖2 = 2− 2〈f, g〉N ≈ 2.

Problem: ψ(x1, . . . xN) carries info of all particles (too detailed).

Keep only information about the k-particle correlations:

γ
(k)
ψ (Xk, X

′
k) :=

∫
ψ(Xk, YN−k)ψ(X ′k, YN−k)dYN−k

where Xk = (x1, . . . xk). It monitors only k particles.

Quantum analog of the marginals of a probability density.

It is an operator acting on the k-particle space.
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H = −
N∑
j=1

∆j +
1

N

∑
j<k

Vβ(xj − xk), i∂tγN,t =
[
H, γN,t

]

The BBGKY Hierarchy: The family {γ(k)
N,t}

N
k=1 satisfies

i∂tγ
(k)
N,t =

k∑
j=1

[
−∆xj , γ

(k)
N,t

]

+
k∑

j=1

Trk+1

[
Vβ(xj − xk+1), γ(k+1)

N,t

]
+ lower order terms .

Tr2

[
V (x1 − x2), γ(2)

]
=
∫

dx2

(
V (x1 − x2)− V (x′1 − x2)

)
γ(2)(x1, x2;x′1, x2) .
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Derivation of the Hartree equation: β = 0, Vβ = V

Special case: k = 1:

i∂tγ
(1)
N,t(x1;x′1) = (−∆x1 + ∆x′1

)γ(1)
N,t(x1;x′1)

+
∫

dx2

(
V (x1 − x2)− V (x′1 − x2)

)
γ

(2)
N,t(x1, x2;x′1, x2) + o(1) .

To get a closed equation for γ(1)
N,t , we assume Propagation of

chaos:

If initially γ
(2)
N,0 = γ

(1)
N,0 ⊗ γ

(1)
N,0, then hopefully γ

(2)
N,t ≈ γ

(1)
N,t ⊗ γ

(1)
N,t .

Assume that γ(1)
N,t → ωt. With %t(x) := ωt(x;x) . We then have

the Hartree eq

i∂tωt =
[
−∆ + V ∗ %t , ωt

]
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The Hartree Hierarchy β = 0: As N →∞, the BBGKY hierar-

chy formally converges to the Hartree hierarchy

i∂tγ
(k)
∞,t =

k∑
j=1

[
−∆xj , γ

(k)
∞,t

]
+

k∑
j=1

Trk+1

[
V (xj − xk+1), γ(k+1)

∞,t

]

Remark:

γ
(k)
t (xk; x′k) =

k∏
j=1

φt(xj)φt(x
′
j)

(
γ

(k)
t = |φt〉〈φt|⊗k

)
is a solution of the Hartree hierarchy if φt satisfies

i∂tφt = −∆φt + (V ∗ |φt|2)φt .
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Strategy for Rigorous Derivation β = 0:

• Prove the compactness of {γ(k)
N,t}

N
k=1 with respect to some

weak topology

• Prove that the limit point {γ(k)
∞,t}k≥1 is a solution of the infi-

nite Hartree equation.

• Prove the apriori estimate needed for the uniqueness of the

hierarchy.

• Prove the uniqueness (well-poseness) of the solution of the

infinite Hartree hierarchy.
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Main Difficulties for Rigorous Derivation β = 1:

1. Derive the GP hierarchy: Suppose γ
(k)
N,t → γ

(k)
∞,t as N → ∞.

Then:

i∂tγ
(k)
∞,t =

k∑
j=1

[
−∆xj , γ

(k)
∞,t

]
+ 8πa0

k∑
j=1

Trk+1

[
δ(xj − xk+1), γ(k+1)

∞,t

]
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Emergence of the scattering length:

Suppose γ(2)
N,t(x1, x2;x′1, x2) = [1−w(N(x1−x2))]γ(1)

N,t(x1, x
′
1)γ(1)

N,t(x2, x2),

∫
dx2Vβ(x1−x2)[1−w(N(x1−x2))]f(x2) = f(x1)×

{
8πa0 if β = 1
b0 if 0 < β < 1
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2. Well-poseness of the GP hierarchy in the H1 class:

Tr (1−∆1) . . . (1−∆k)γ(k)
∞,t ≤ C

k (†)

Tool: Analysis on Feynman diagrams.

3. A priori estimate so that (†) holds. Due to the short scale

structure, the estimate

Tr (1−∆x1) . . . (1−∆xk)γ
(k)
N,t ≤ C

k

is wrong.

Only after taking the weak limit so that the short scale structure

disappears, can such bounds hold.

Klainerman-Machedon: Uniqueness via space-time norm.
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Method of Moments of Energy—the second moment

Proposition: For any wave function ψN :

〈ψN , H2
N ψN〉 ≥ CN2

∫
dx |∇1∇2 φ12|2

with φ12(x) = [1− w(N(x1 − x2))]−1ψN(x).

Consequence: any eigenfunction with energy ' N must have the

short scale structure [1− w(N(x1 − x2))] when x1 is near x2.
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• BEC for ground state ψ without scaling: Off-diagonal long

range order (Yang)

• How to interpret systems with negative scattering length?

inf
u

∫
|∇u|2dx+

∫
U |u|2 − 4πa0

∫
|u|4dx = −∞

The BEC cannot be the ground state! BEC for system with

negative correlation length is a metastable state.

• fermi systems
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