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INTERACTING MANY-BODY QUANTUM SYSTEMS

x = (z1,20,...,zxn) € R3N position of the particles.
Symmetric wave function: ¥ (z1,...,zx) € L2(R3N)
N
Hy =3 | = Doy +Up)| + A Y Via - ;)
j=1 i<j

U is a one-body background (“trapping” ) potential
V is the interaction potential

O N = HNYN 4, YNt = [H : ’YN,t}a [A,B] = AB — BA
with vy = | ) (¥ | density matrix (1 dim. projection).

One particle density matrix:



Time-independent BEC in Scaling Limit

N
1
Hy =3 |~ Dy + Ulzp] + - 3 NV(N(zi - x))
Approx Dirac delta interaction with range 1/N (“hard core”)

[Dyson, Lieb-Seiringer-Yngvason, Lieb-Seiringer]

e Ground state energy is given by the Gross-Pitaevskii functional

H
im infspec -~ = inf Eap(8mag, ), apg = scatt. length of V
N—o0 N @ lel[=1

o
Eap(0,¢) == [ [Vl + Ulel? + Z1el*
e Complete condensation in ground state:

WP @ia’) = (@)d(@), ¢ = minimizer of Egp



Time Dependent GROSS-PITAEVSKII (GP) Theory

The GP energy functional also describes the evolution:

Tie = e@EE) = 4] = @)@

The condensate wave fn. evolves according to a NLS
iOpr = | — A + U + 8mag|pi]? | ¢, Pr=0 = ¥

Many-body effects & corr — non-linear on-site self-interaction

Experiments of Bose-Einstein Condensation: Trap Bose gas and
observe its evolution after the trap removed.

Dynamics: The ground state of trapped BEC is a highly excited
state for the system without traps. GP describes also excited

states and their evolution!

Cannot be completely correct. Now set U = 0.



N
1
Hy= Y — Dyt N Vg(zi—z;), Va(z):= N> V(NPz), 0<p<1
j=1 i<j

THEOREM: [Erd6s-Schlein-Y, 2008] Assume V > 0 and

V(z) < C(1+ |z|)~>. Suppose the initial state satisfies

1 _
Tia(@y) — ug(@)io(y),  we HY(R®)
Then for every £k > 1 and t > 0 fixed
k
”yz(v% — |ug)(wg|®* N — o0
. _ > ] bg if O0<pB<1
’Lat’lLt — Aut + Glut| ¢t7 0 — { 871'(1,0 if 6 — 1

where ag is the scatt. length of V and bg = [dxV (x) # 8mag

Adami, Bardos, Golse, Teta: one dim result. Use § < —A in R
and the EY approach.



SCATTERING LENGTH
1
(—A + EV(QZ)) (1 —w(x)) =0 with w(z) — 0 for |z| — oco.

w(x) = |C:1:_O| for |z| — oo /da:V(:Iz)(l —w(x)) = 8mag

Dyson’s trial function for ground state:
Wiy(x) = I |1 - w(N(zj - z3))]
j<k
States with and without short range structure:

N N
YN (x) = Wn(x) ] wolz)), on = ][ wolzj)

im NNy, Hyw) = [ [Vu(@)? + 4maolu()|*

N —o0

b
im NN, Hyon) = [ [Vuo@)? + Dlu(@)l*

N—o0



The theorem for 8 =1 holds for ¥ and ¢y .

Our Theorem shows that the local singular structure is preserved
by the N-body evolution for initial state ¢ 5. For product initial
state, it shows that the local structure emerges .

WdNt = HNONt, ON =0 = ON

N~ HNon e Hyong) = N~ Hon, Hyén)

— Eqp(bo,ug) # Egp(8mag, ug) = Egp(8mag, ut)

For product initial state, the GP energy functional (with the
coupling constant 8mwag) does not describe the energy of the
N-body system . But the time dependent one particle density
matrices in a weak limit is still given by the GP equation with
coupling constant 8mag.



Mathematically: The convergence of the time dependent density
matrices is so weak that the energy does not converge.

Physically: For states with product initial data, the short scale
behavior will show the characteristic 1 — w(N(z; — z;)) structure
after a short initial layer. This lowers the energy of the system
locally. The energy lost was transfered to energy in other scales.



NONLINEAR HARTREE EQUATION: =0,Vg=V

10rpr = — At + (V* |90t|2)80t

Hepp: smooth potential, Ginibre-Velo: use coherent state. Schlein-
Rodnianski apply to states with fix number of particles with
Coulomb potential.

Spohn: bounded potential, BBGKY hierarchy.

Bardos, Golse and Mauser: convergence to hierarchy for Coulomb
case, but no uniqueness nor a priori estimates.

Erdos-Y: Uniqueness of Coulomb case and a priori estimate.

bosonic star (Elgart-Schlein, Frohlich-Schwarz)



Fundamental difficulty of N-particle analysis (N > 1)
There is no good norm. The conserved L2-norm is too strong.
Let W =@ f, ® =Yg, then |V - |2 =2 -2(f, g}V ~ 2.
Problem: ¥(x1,...xz5) carries info of all particles (too detailed).

Keep only information about the k-particle correlations:

(k)(Xk,Xk) —/¢(Xk,YN Y (XG, YN 1)dY N ¢

where X, = (x1,...x). It monitors only k particles.
Quantum analog of the marginals of a probability density.

It is an operator acting on the k-particle space.
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N
— _ Z —|— Z V@(SU] — xk) iat’VN,t — [H7 /VN,t]
1=1 ]<k

The BBGKY Hierarchy: The family {7(]@},{:1 satisfies

k
Z@t Z [ ij77(k)]

k
Z Tre41 [VQ(% Tht1) VN ¢

(k+ )] + lower order terms.

Tro [V(wl - sz)ﬁ(Q)]

- /dxz <V(w1 —x3) — V(2 — 582)) 72 (@1, 205 2], 20) .
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Derivation of the Hartree equation: §=0,Vg =V

Special case: k£ = 1:
@8757]\[15(371 5131) = (- AV A )'YNz(fClv 371)
+ [ daa (Vw1 = 22) = V(@ = 22)) 1) (@1, 2277, 22) 4 0(1)

To get a closed equation for fy](\,lz we assume Propagation of
chaos:

If initially 1§y = 730 ® 75 o: then hopefully 77) & 7§11 @ vy -

Assume that W(vlz — wt. With gi(x) := wi(x; ) . We then have
the Hartree eq

WO = | — A F+V x 04, wy
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The Hartree Hierarchy g = 0: As N — oo, the BBGKY hierar-
chy formally converges to the Hartree hierarchy

Zé’t’yoo Z [ Aa;j,'y(k)] + Z Trp41 [V(SB — Tp41); ’Y(k+1)]

Remark:

k
v (xp %) = T 1 ()b () (%5(]{) = |¢t><¢t|®k)

J=1
is a solution of the Hartree hierarchy if ¢; satisfies

0y = — Ay + (V = |2 by

13



Strategy for Rigorous Derivation g = 0O:

e Prove the compactness of {7](\?%}@]:1 with respect to some
weak topology

e Prove that the limit point {chf?t}kzl is a solution of the infi-
nite Hartree equation.

e Prove the apriori estimate needed for the uniqueness of the
hierarchy.

e Prove the uniqueness (well-poseness) of the solution of the
infinite Hartree hierarchy.
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Main Difficulties for Rigorous Derivation g = 1:

1. Derive the GP hierarchy: Suppose fy](\f% — fyéf)t as N — oo.

Then:
k
(k+1)

0y = Z [ AN )] + 8mag Z Trepa [5(% ~ T4 1)s Voo t
: j 1
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Emergence of the scattering length:

Suppose ’YN )(21,20; ', x0) = [1— W(N(fvl—xz))]’m (331,501)7]\[ (z2,72),

[ daaVa(ar—a2) 1w (N (w1 —22)))f (w2) = f(:c1>><{ 8(? 0 5 g:; <1

p=1 1/NP

1-w(x)

7__\:\_/'/f o _RKH_—-—__’{;I—
/Illnll I'-I_\. VN (X) _-._..’/'/.----__ o - ..\\\_____
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2. Well-poseness of the GP hierarchy in the Hy class:
k
Tr(l—a1)...-ad, < 1)
Tool: Analysis on Feynman diagrams.

3. A priori estimate so that (f) holds. Due to the short scale
structure, the estimate

Tr(1—Aay) ... (1— Az < CF

IS wrong.

Only after taking the weak limit so that the short scale structure
disappears, can such bounds hold.

Klainerman-Machedon: Uniqueness via space-time norm.
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Method of Moments of Energy—the second moment

Proposition: For any wave function ¢ :
Wn, HR y) > CNQ/dX V1V p12/°

with ¢12(x) = [1 — w(N(z1 — 22))] " YN (x).

Consequence: any eigenfunction with energy ~ N must have the
short scale structure [1 — w(N(x1 — z2))] when z7 is near z».
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e BEC for ground state ¢ without scaling: Off-diagonal long
range order (YYang)

e How to interpret systems with negative scattering length?

i%f/|Vu|2dx—|—/U|u\2 —47Ta0/|u|4d:13 = —00

The BEC cannot be the ground statel BEC for system with
negative correlation length is a metastable state.

e fermi systems
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