
MORE NOTES ABOUT THE DECOMPOSITION OF Gln(C)
IRREDUCIBLE MODULES INTO Sn IRREDUCIBLES

MIKE ZABROCKI

First we list some properties of the Frobenius map which sends a an Sn character χ :
Sn → C into a symmetric function by the map

F(χ) =
∑
λ`n

χ(σ(λ))pλ/zλ.

For an Sn module M , denote Frob(M) = F(charSn(M)).
Let Mλ be a Gln(C) module with character equal to the symmetric function sλ(x1, x2, . . . , xn).
I mentioned in the last writeup that Frob(M (1k)) = s(n−k,1k) + s(n−k+1,1k−1). I received

an elementary proof of this proposition from Adriano Garsia:

M (1k) ' L{xi1∧xi2∧· · ·∧xik : 1 ≤ i1 < i2 < · · · < ik ≤ n} ' IndSn
Sk×Sn−k

L{x1∧x2∧· · ·∧xk}

where the action of Sn−k is trivial on the module and Sk has the sign action on x1 ∧ x2 ∧
· · · ∧ xk.

Therefore Frob(M (1k)) = s(1k)s(n−k) = s(n−k,1k) + s(n−k+1,1k−1).
That two line proof should be broken down into lemmas

Lemma 1.

M (1k) = L{xi1 ∧ xi2 ∧ · · · ∧ xik : 1 ≤ i1 < i2 < · · · < ik ≤ n}

Proof. We compute the Gln(C) character of L{xi1 ∧ xi2 ∧ · · · ∧ xik : 1 ≤ i1 < i2 < · · · <
ik ≤ n}. Let diag(y1, y2, · · · , yk) represent a diagonal matrix of Gln(C) which acts on the
variables by diag(y1, y2, · · · , yk)xi = yixi.∑

i1<i2<···<ik

diag(y1, y2, · · · , yk)xi1 ∧ xi2 ∧ · · · ∧ xik

∣∣∣
xi1

∧xi2
∧···∧xik

=

∑
i1<i2<···<ik

yi1yi2 · · · yik = s(1k)(y1, y2, . . . , yn)

Therefore L{xi1 ∧ xi2 ∧ · · · ∧ xik : 1 ≤ i1 < i2 < · · · < ik ≤ n} is the irreducible module
with character s(1k)(y1, y2, . . . , yn). �

Lemma 2.

L{xi1 ∧ xi2 ∧ · · · ∧ xik : 1 ≤ i1 < i2 < · · · < ik ≤ n} ' IndSn
Sk×Sn−k

L{x1 ∧ x2 ∧ · · · ∧ xk}
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Proof. Recall that IndSn
Sk×Sn−k

L{bi} = L{σ ⊗Sk×Sn−k
bi : σ ∈ Sn, bi} where we have the

tensor over a group satisfies the relations

σh⊗H v = σ ⊗H hv.

The isomorphism is given by

xi1 ∧ xi2 ∧ · · · ∧ xik 7→
(

1 · · · k k + 1 · · · n
i1 · · · ik j1 · · · jn−k

)
⊗Sk×Sn−k

x1 ∧ x2 ∧ · · · ∧ xk

where {j1, j2, . . . , jn−k} = [n]\{i1, i2, . . . , ik}.
The proof is to show that this map is equivariant with respect to the action of the

symmetric group Sn and it suffices to show that the action of the simple transpositions
(j, j + 1) are equal on both basis elements. There will be four cases to consider, namely
both j and j + 1 are in {i1, i2, . . . , ik}, j is in {i1, i2, . . . , ik} and j + 1 is not, j + 1 is in
{i1, i2, . . . , ik} and j is not, and j, j + 1 /∈ {i1, i2, . . . , ik}.

We leave the remainder of the proof as an exercise to the reader. �

The third step of Adriano’s proof is that we need to know some properties of the Frobe-
nius map. We list below some of the images of common Sn modules.

trivial Sn module → s(n)

sign Sn module → s(1n)

permutation representation {1, 2, . . . , n} → s(n−1)s(1) = s(n) + s(n−1,1)

regular representation → sn
(1)

IndSn
Sk×Sn−k

M ⊗N → FrobSk
(M)FrobSn−k

(N)⊕n
k=0 ResSn

Sk×Sn−k
M → ∆(FrobSn(M))

ResSn
Sk×Sn−k

M →
∑

λ`k s⊥λ FrobSn(M)⊗ sλ

M ⊗N (with Sn acting diagonally) → FrobSn(M)� FrobSn(N)

Adriano also provided me with a construction of the irreducible Gln(C) modules. Let T
be a standard tableaux of shape λ a partition of k. Let

N(T ) =
∑

σ∈col(T )

sgn(σ)σ

P (T ) =
∑

σ∈row(T )

σ

hλ = product of the hooks of λ

col(T ) and row(T ) are the column and row group of the tableau T and are subgroups of
Sk. Sk will act on positions of letters in words, that is, a right action. Gln(C) will have a
left action on the variables.

Next set
ET = N(T )P (T )/hλ.
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Now set
Mλ ' L{wET : w ∈ [n]k}.

Note that the elements wET form a spanning set and not a basis so one will have to linearly
reduce these elements to a basis.

What is interesting to note from this construction is that it is possible to decompose
Mλ into submodules of a fixed content. We define the content of a word to be the tuple
representing the number of 1s, the number 2s, ..., the number of ns in the word. This
tuple is then sorted so that order of the elements does not matter. 0 entries are allowed
in this tuple so that the content of a word will be content(w) = 0n01n1 · · · rnr where
n0 + n1 + · · ·+ nr = n and 0n0 + 1n1 + · · · rnr = k (e.g. if n = 4 then content(114414) =
content(222111) = (0232)). Next we set

Mλ
α = {wET : w ∈ [n]r, content(w) = α}.

Now we have reduced the problem of finding a decomposition of the module Mλ as an
Sn module to finding a decomposition of the module Mλ

α for each α. For many special
cases of α this is not a difficult problem.

Proposition 3.
FrobS|λ|(M

λ
1|λ|) = sλ.

Proof. This is Schur-Weyl duality.

Mλ
1|λ| = {wET : w ∈ Sn}

�

Proposition 4.

FrobSn(Mλ
0n01n1 ···rnr ) = s(n0)FrobSn−n0

(Mλ
1n1 ···rnr ).

Proof. (idea) Show that

Mλ
0n01n1 ···rnr ' IndSn

Sn0×Sn−n0
Mλ

1n1 ···rnr

where the action of Sn0 is trivial. �

Proposition 5.
FrobSn(M (k)

0n01n1 ···rnr ) = s(n0)s(n1) · · · s(nr).

Proof. I showed what the decomposition of M (k) was last time using only symmetric func-
tion theory. This is (somewhat) a refinement of the statement that

FrobSn(M (k)) =
∑
T

sλ(T )[X]

where the sum is over all column strict tableaux T (non-neg entries less than or equal to
n) with content that sums to k.

What I am saying here is that

FrobSn(M (k)
α ) =

∑
T

sλ(T )[X]
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where the sum is over all column strict tableaux T whose content is α. �

Conjecture 6.
FrobSn(Mλ

(1|λ|−``)
) = s(1)s

⊥
(`)sλ

Conjecture 7.

FrobSn(Mλ
(1n12n2 ···`n` )) =

∑
µ`n1

∑
γ`k−n1

cλ
µγFrobSn−n1

(Mγ
(2n2 ···`n` ))sµ

Conjecture 8.

FrobSn(Mλ
(dnd ···`n` )) =

∑
µ`dnd

∑
γ`k−dnd

cλ
µγFrob(Mγ

((d+1)nd+1 ···`n` )
)Frob(Mµ

dnd )

This last conjecture is a ‘master’ conjecture since it implies all the others. Using it we
have reduced the calculation from the determination of the decomposition of Mλ

α to the
decomposition of Mλ

(ab)
.

I still don’t know how to compute FrobSb
(Mλ

(ab)
), but I do have the following clues:

Conjecture 9.

FrobS2(M
λ
(a2)) =


s(11) if λ = (2a− b, b) with b odd
s(2) if λ = (2a− b, b) with b even
0 else

Conjecture 10.

FrobSb
(M (1b)+λ

(ab)
) = s(1b) � FrobSb

(Mλ
((a−1)b))

I have a good idea on how to prove most of the conjectures above since their very
formulas suggest that there is some module isomorphism that can be used to demonstrate
them.

The first cases where one of the conjectures above does not apply is α = (23). I was able
to compute by process of elimination (since I can compute Frob(Mλ) and Frob(Mλ

β ) for
β 6= α, then we can deduce Frob(Mλ

α)) that

FrobS3(M
(33)
(222)) = s(13)

FrobS3(M
(42)
(222)) = s(2)s(1)

FrobS3(M
(51)
(222)) = s(21)

Any clues about why?
Example: We have by Conjecture 8

FrobS4(M
(42)
(2211)) = FrobS2(M

(4)
(22))s(2) + FrobS2(M

(31)
(22) )s

2
(1) + FrobS2(M

(22)
(22) )s(2)

since FrobS2(M
λ
(11)) = sλ.
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In addition we know FrobS2(M
(4)
(22)) = 2 by Proposition 5 and FrobS2(M

(31)
(22) ) = s(11)

and FrobS2(M
(22)
(22) ) = s(2) by Conjecture 9. Therefore,

FrobS4(M
(42)
(2211)) = 2s(2)s(2) + s(11)s

2
(1)

I have placed data for λ a partition of 6 for my conjectures on the decomposition of
homogeneous components on the web page for this seminar.


