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Preface by the Director of the Fields Institute

During the week of August 14-18, 2006, the Fields Institute experienced a new venture.
A casual visitor during that time would have been uncertain whether this was a research
institute or a summer camp, as a set of mostly young participants filled the offices, seminar
rooms and halls from dawn until well after dark. The occasion was the first Fields-MITACS
Industrial Problems Workshop (FMIPW), run on the model of the “Study Groups” pio-
neered in Europe and the US and introduced to Canada by PIMS and MITACS. FMIPW
brought the concept to Eastern Canada, and the success of the first Workshop has ensured
that this will become institutionalized here: a CRM-MITACS IPW will take place in Mon-
treal in 2007 and after that the workshops will alternate between Toronto and Montreal
(while PIMS continues to conduct an annual IPSW in the West).

This Proceedings volume represents more than a report of the activities that took place
during five busy days. The problem-solving groups took the problems home with them and
have worked up further results, have added references and details, and have provided further
background and conclusions to the brief reports they gave on August 24. Nonetheless, the
main part of what you will read here was produced during that one incredible week.

The written words cannot do justice to the atmosphere around the Institute that week.
About half of the 65 participants were veterans of the IPSW circuit; they greeted each other
as old friends, and welcomed newcomers on the first day. Problems were presented. To my
ears, they sounded intriguing, but in many cases hopelessly intractable. The questions
came from all over the map (literally: the SARS problem code-named airports all around
the world). Some of them (like the mother-child attachment scenario) were presented with
no mathematical model whatsoever, and did not offer many handles for “industrial mathe-
maticians” to grasp.

No matter. The eager participants grabbed lunch (the program included a daily buffet
set out on trestle tables in the foyer), selected team leaders and started assembling teams.
Miraculously, each problem was the first choice of a distinct set of participants. Huaxiong
Huang and Nilima Nigam, like experienced camp counselors, combed through the groups
each day, adjusting approaches, and occasionally membership. A daily briefing identified
any problem where progress was behind schedule, and allowed further changes in team
composition. I don’t know if anyone went home on Thursday night before midnight, but
on Friday morning they were lined up to present answers to the proposers. An astonishing
transformation had occurred. A problem that had been presented on Monday as a jumble
of information and questions, with incomplete or censored data, had turned into an elegant
model juxtaposed with a tidy solution. One after another, teams walked to the front of the
room and announced, “We solved this problem ...”

The youthfulness of the participants surely contributed to the carnival atmosphere
(though some of the most enthusiastic team members were senior professors), and the
fact that a number of them are mothers or fathers of young children must have contributed
to the attraction of the mother-child problem (which had the largest team and produced
three distinct solution strategies). But it was equally impressive to observe leaders in each
problem emerging from the first-time participants.
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The two problems from the financial sector were presented at the start in a mathematical
form by mathematically sophisticated presenters, but even here participants got new insights
into the kinds of answers needed by the presenters’ companies (for example, an algorithm
that produced instant results). A third problem, the analysis of micro-array data, also
involved analysis of quantitative (numerical) data, though here also the expertise of the
participant team, which included statistics but also other disciplines, contributed something
new to the solution. The remaining problems broke new ground for most of the participants,
and gave a snapshot of the challenges that an initiative like this will encounter as we move
away (which we chose to do, deliberately) from a narrow focus on certain kinds of industries
to encompass a wider set of practical engineering and societal problems that are faced by
government laboratories and medical research establishments. The yolk dynamics problem,
the analysis of SARS data and the systematic interpretation of study data in the mother-
child problem are remarkable as examples of the variety of problems that are faced by
researchers or practitioners, to which mathematical analysis can contribute a piece - perhaps
even the key piece - of the solution. The amphibian yolk dynamics problem was almost
classical engineering - but only after one had listened to and understood the physiological
framework in which it was presented. And it became intensely more interesting when one
heard the ecological importance of understanding the solution. The SARS data could not
have been analysed without help from the extensive repertory of modelling of infectious
disease transmission. To discover that analysis could tease a meaning out of what appeared
to be an almost incoherent data set was one of many revelations of the week. And, finally,
the richness of modelling that contributed to an understanding of the situation presented
in the mother-child problem astonished all the participants. One of the proposers of the
problem, Leslie Atkinson (son of the esteemed mathematician F. V. Atkinson) greeted the
presentation of the three solutions with the simple words, “I am blown away”.

In this volume, you will read the solutions, though nothing can reproduce the confused
picture given by the original presentations. So a perusal of these papers, fascinating as they
are, can only begin to suggest the genius and innovation that went into the writing of them.
For that, you will just have to participate in the next Industrial Problems Workshop. I
recommend it highly.

Barbara Lee Keyfitz

Director, The Fields Institute
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Message from the Scientific Director of MITACS

As I read about all the wonderful work done at the first Fields-MITACS Industrial Prob-
lems Workshop, the enthusiasm and camaraderie of the event is obvious. There’s something
magical about a team of scientists, many of whom have not previously collaborated, getting
together to look at a problem posed by a non-expert. The problem is often not well defined
and yet, after careful consideration and discussion with the proposers, a well-formulated
problem emerges. And now, with different expertise and working together, a multitude of
mathematical techniques are used to attack the problem. And so, after five days, the pro-
posers are amazed at the solutions that come out and the insights gained while the scientists
have the satisfaction of having made a real difference to a societal challenge. This is what
happened at the Fields on August 20-24, 2006 and these proceedings are a testament to a
highly successful workshop run by a dedicated group of scientists, with over 60 participants
donating their time all within the confines of a magnificent venue - the Fields Institute.

The MITACS Network of Centres of Excellence is mandated to promote industrial
mathematics in Canada. When I think about the beginnings of MITACS, I note that the
network, in many ways, arose out of the problem solving workshops that started ten years
ago at PIMS. Those workshops gave the Canadian mathematical community the confidence
to know that we could make a significant contribution to Canadian industry and society.
We saw the need and MITACS allowed us to focus our energy into meeting it. So, in many
ways we were overdue to expand these workshops beyond the West. The vibrant industrial
community in Central Canada, the excellence of the mathematical community in Ontario
and the rest of the country, and the growing numbers of students who are keenly interested
in industrial mathematics speaks to the need - this workshop is a realization of that need.

The problems at the workshop were drawn from the biomedical/social sciences and the
financial sectors. Both of these are key theme areas of concentration within the MITACS
research program. As such, I firmly believe that we will see spin-offs from this workshop
with scientists and possibly even the non-academic partners participating in future MITACS
scientific programs. I am also pleased to know there will be two workshops in 2007 (one in
Montreal at the CRM and one in Edmonton at PIMS) which will give ample opportunity
for Canadian scientists to further develop new industrial outreach and to involve still more
scientists in this activity.

My sincerest thanks to the organizers, Huaxiong Huang, Barbara Keyfitz, and Nilima
Nigam, who put in a tremendous effort in launching this initiative and thought about every
aspect to ensure the workshop ran smoothly. They were joined by Sean Bohun, Greg
Lewis, and Roderick Melnik to form the scientific committee and the choice of problems
is a testament to their efforts. There are many others who deserve to be recognized for
their contributions - the editors of these proceedings, Dhavide Aruliah and Greg Lewis, the
problem presenters and the scientists who participated and the staff at Fields. To all of
them, congratulations on a superb job and I am looking forward to hearing about successes
of future workshops.

Arvind Gupta
Scientific Director, MITACS
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Nonlinear Dimension Reduction for Microarray Data (Small
n and Large p)
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Academic Participants: Dhavide Aruliah (University of Ontario Institute of Technology),
Guangzhe Fan (University of Waterloo), Roderick Melnik (Wilfred Laurier University),
Suzanne Shontz (Pennsylvania State University), Steven Wang (York University), Jiaping
Zhu (University of Waterloo)

Report prepared by: Suzanne Shontz1

1 Introduction

Over the last decade or so, researchers have developed techniques for measuring the
expression level of many genes in an organism simultaneously. One such technique is the
cDNA microarray [13, 11]. Such techniques generate a torrent of data that can be used to
then learn more about gene functions, response to stimuli, and interactions.

A cDNA microarray is a glass slide on which many (usually thousands) segments of
DNA (often genes, but not always) are attached in distinct spots. Messenger RNA is then
extracted from two different populations of cells (for example, cancer and normal tissue)
and reverse transcribed to complementary DNA (cDNA). Each of the two sets of cDNA
is tagged with a molecule of fluorescent dye; usually they are red and green, respectively.
The cDNA solutions are then washed over the glass slide and hybridized with the genetic
material spotted onto the slide. When a molecule of cDNA matches the DNA spotted onto
the slide, it reacts and binds to it, bringing along the fluorescent dye molecule. The greater
the number of copies of the appropriate piece of cDNA present in the sample, the greater the
number of dye molecules which will bind to that particular spot, creating a stronger signal.
If red and green dyes are used, the spots will appear to fluoresce with varying intensities of
red, green, and yellow (when cDNA from both samples bind to the spot). These intensities
can be measured by a scanner to determine the relative expression level of each gene in each
of the two cell populations.

Microarray experiments thus typically have thousands of variables explaining each indi-
vidual sample in the experiment and typically only a handful (a few hundred at most, often

1shontz@cse.psu.edu
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2 Nonlinear Dimension Reduction for Microarray Data (Small n and Large p)

many fewer) distinct samples. Furthermore, the thousands of genes in an organism are not
independent entities, and each reacts to the activation level of other genes in a complicated
and not well-understood way. This raises a mathematical challenge. Each experimental
sample can be viewed as a point in a space of dimension equal to the number of genes being
measured. The question is, can one find a lower-dimensional space in which to work? Or,
stated more precisely, given a set of n points in an p-dimensional linear space, drawn from
some unknown distribution V , find a d-dimensional (possibly nonlinear, d � p) manifold
that approximates the points well?

There are many measures for determining whether or not a lower-dimensional manifold
approximates the points well. The simplest is that the orthogonal distance from each
point to the manifold should be minimised, but this is by no means the only choice, and
other options will be discussed below. It is important to note, however, that any notion
of goodness-of-fit should apply not just to the data that has already been collected, but
also to future data points drawn from the distribution V . To ensure this, a cross-validated
estimate of error must be used, for example, the leave-one-out error described below.

2 Filtering the data

2.1 Motivation for filtering. Typical microarray data have quite high dimensionality
due to the number of genes involved. For example, the simplest biological model, yeast, has
more than 6000 genes. In 2003, estimates from gene-prediction programs suggested there
might be as many as 24,500 protein-coding genes [12]. The Ensemble genome-annotation
system estimates their number at 23,299. Therefore, the dimensionality is very high. On
the other hand, the number of observations that is available is usually very low due to fact
the microarray experiments are too expensive to produce many replications. This is known
as the problem of “large p and small n”.

Although there are many human genes, often medical researchers are only concerned
with a dozen or fewer genes if they are interested in one particular disease. Therefore it is
not necessary to consider all the genes in the analysis of microarray data. Furthermore, the
information or “signal” for the genes of interest could be overwhelmed by the genes that are
not relevant to the current analysis. Dimensionality reduction is necessary given the fact
that there are not many observations that are scattered in very high-dimensional space.

Furthermore, the filtering is crucial for any data mining technique to work. For example,
the clustering procedure is often applied to microarray data to divide the large-dimensional
space into subspaces such that the subspaces are much more manageable than the whole
space. However, most clustering algorithms would rely on a proper choice of distance
function. There are many distance functions proposed in the literature. We will demonstrate
our argument by using the most commonly used distance function, i.e., Euclidean distance.
To make our argument more transparent, we suppose that there are p random variables
that are independent and identically distributed with a standard normal distribution, i.e.

X1, X2, · · · , Xp ∼ N(0, 1).

Let us further assume that only Y1 and Y2 are important or relevant to us. Furthermore,
we assume that

Y1 ∼ N(10, 1) and Y2 ∼ N(20, 1)
for the observations from the treatment group and Y1, Y2 ∼ N(0, 1) for the control group.

However, the vector (Y1, Y2, X1, X2, · · · , Xp) will not be informative if the Euclidean dis-
tance is used. Let Ok = (Yk1, Yk2, Xk1, Xk2, · · · , Xkp) and Oj = (Yj1, Yj2, Xj1, Xj2, · · · , Xjp)
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represent two observations in a microarray data set. Note that Yk1 ∼ N(10, 1) and Yk2 ∼
N(20, 1).

It can be verified that

dist(Oj −Ok)2 =
√

(Yk1 − Yj1)2 + (Yk2 − Yj2)2 + χ2(p)

where χ2(p) denotes the central χ2 distribution with mean p and variance 2p.
It can be verified that

(Yk1 − Yj1)2 + (Yk2 − Yj2)2 + χ2(p)
χ2(p)

P−→ 1, as p→∞. (2.1)

This implies that the Euclidean distance function will be dominated by those variables
that are pure noise in general. Although another distance function might be a better choice,
they all suffer from the same problem but to a lesser degree.

Therefore, filtering is very important to quickly reduce the genes of interest and avoid the
aforementioned problems introduced by those noisy variables which contain no information
at all.

2.2 Example of preprocessing. Various methods of preprocessing have been pro-
posed in the literature. These methods mainly deal with problems having class labels. For
example, Golub et al. [3] proposed a univariate ranking criterion for each gene in a two-class
situation. The criterion is can be defined as the ratio of the absolute mean difference of
gene expression levels of the two classes with respect to the sum of standard deviations of
the two classes for each gene considered. Higher ratio indicate higher ranking of the gene.
Some other author used the ratio of between-class sum of squares to within-class sum of
squares of each gene for multi-class problems. Later, Tibshirani et al. [14] used the shrunken
centroids method for gene classification. Shrinkage and gene selection are integrated into a
naive Bayes classifier. The univariate gene selection is based on t-statistics for each gene of
each class.

Another method is the random forest procedure [1]. Random forest is an ensemble tree
approach in data mining. It has been used as a popular approach in gene selection. Basically,
random forest build tree classifiers. A tree classifier recursively partition the data to classify.
The tree is built by greedily searching locally optimal split rules recursively. Instead of using
all variables (genes) to build the trees, random forest uses a random sample of variables
(genes) during the tree construction. The randomness causes different trees built even
following the same procedure each time. In this sense, we can get many (usually more than
50) different trees using the same data set. These trees are used as an ensemble classifier
via voting. Random forest can have high accuracy in classification. It also effectively
estimates the performance of these randomly selected variables (genes) and provides an
overall measure of variable (gene) importance. Different ways of evaluating the variables
(genes) can be found in the random forest manual. These importance measures will consider
interactions among the variables (genes) due to the nature of the tree classifiers.

As an example, let us look at the famous Leukemia data. This data set has 38 training
samples and 34 test samples of two types of acute leukemias, acute myeloid leukemia (AML)
and acute lymphoblastic leukemia (ALL) [3]. Each sample is related to 7129 genes.

Due to the large number of genes, we propose a combination of univariate ranking and
random forest. First, univariate ranking is performed to select the best 200 genes. Then
the random forest procedure is performed on these 200 genes to obtain their measures of
importance. Below is a figure showing the importance measure of the 200 pre-selected genes.
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Figure 1 Variable (Gene) Importance using Random Forest for 200 Pre-selected Genes

We see that the variable importance using random forest is not the same as that using
univariate ranking when interactions are considered. We can select a number of genes based
on the variable importance for our needs.

2.3 Future avenues. As seen in the previous example, univariate ranking methods
implicitly assume weak or no interactions or correlations among genes, which may not be
true in practice of microarray analysis. The ideal situation would be to have a method which
considers all variables together for selection. We now introduce the support vector machine
classifier. The support vector machine basically searches for the optimal hyperplane that
separates the data. Here an optimal hyperplane is the one that maximizes the geometric
margin (the closest distance of the observations to the hyperplane). For a nonlinear pattern,
the original space can be mapped to a high-dimensional space using kernel functions and
the so-called Reproducing Kernel Hilbert Space (RKHS). So support vector machines can
learn very well for a general problem.

In particular, for gene expression data, Guyon et al. [4] proposed a recursive feature
eliminating method for gene selection. First, all the variables (genes) are used in model
fitting. Then a large number of variables (genes) which are not significant in the model
are removed. The model is then rebuilt on the rest of the variables (genes), and we can
recursively repeat the procedure until only a small number of genes is left in the model.
Zhu and Hastie used penalized logisitic regression with similar ideas of gene selection [16].

For example, in the Golub 1999 data set just described in the previous section, Zhu and
Hastie report 26 genes selected with two cross-validated errors on the training set and one
error on the test set. The support vector machine selects 31 genes with similar performances.

In the future, we could try to combine random forest with support vector machine to
perform gene selection.
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3 Nonlinear dimension reduction

While filtering the data requires the methodologies to be able to identify in some sense
redundant information in the already existing data, the ultimate purpose of dimensionality
reduction is to reduce the data to a low-dimensional manifold in such a way that unsuper-
vised learning is possible on new data. In other words, we have to discover the main trend
in the existing data in order to be able to deal with newly acquired data in a similar way.
Along with the (probabilistic) density estimation techniques, dimensionality reduction is a
key methodology in developing algorithms for unsupervised learning [10]. Although these
two methodologies can be applied simultaneously, nonlinear reduction can also be developed
in a non-probabilistic framework.

Historically, first developed techniques for dimensionality reduction were based on linear
versions of principal component analysis (PCA) (described below) and other eigenvalue-
based methods such as variants of centre manifold reduction techniques. Due to difficulties
with the mapping of the higher-dimensional data (even if represented by clusters) into a
single coordinate system of lower dimensionality in applications of such techniques, most
recent developments were centered around nonlinear dimensionality reduction methods.
These techniques, similarly to traditional linear methods, are essentially based on spectral
embeddings, but with a key new feature now of being able to generate nonlinear embeddings.

3.1 Spectral embedding methodologies.
3.1.1 Generic setting for the spectral embedding. Nonlinear procedures of interest can

be cast in the following generic setting:
1. Given the input space, compute neighbourhoods;
2. Construct the cost function to determine the weight matrix as a result of an optimi-

sation procedure (e.g., minimising the generalized error function);
3. Based on the eigenvectors of the above matrix (can be shown with the Rayleigh-Ritz

ansatz), calculate the spectral embedding.
3.1.2 The nearest neighbour parameter as a key to success. The starting point of spectral

embedding methodologies is computing neighbourhoods. In all the algorithms currently
available to the National Research Council (NRC) of Canada, our industrial partner, we
have one of the two situations:

• either the number of nearest neighbours is predefined by a certain value, denoted
further by K (as it is the case, for example, in the Locally Linear Embedding (LLE)),

• or the input information requires the neighbourhood radius, denoted further by ε (as
is the case, for example, in Isomap).

This may bring difficulties in some of the practical situations where a nonlinear di-
mensionality reduction algorithm is applied to a set of new data. Indeed, if we choose an
estimate for K in the LLE such that K is very small compared to the real situation, a
neighbourhood can falsely divide the underlying manifold. On the other hand, if we choose
an estimate for K in the LLE such that K is large, the resulting manifold will be excessively
smoothed and important small-scale features will be completely missing. Similar difficulties
arise in the choice of ε.

3.1.3 Description of some algorithms. Locally Linear Embedding (LLE): The Lo-
cal Linear Embedding (or LLE) Algorithm is a spectral embedding method for nonlinear
dimension reduction developed by Roweis and Saul [8]. This algorithm takes as input X,
a p × n matrix (whose columns contain the n data points in Rp) and outputs Y , a d × n
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matrix, where d < p is the dimensionality of the embedding of the input. The idea behind
this algorithm is to characterize the local geometry of patches by linear coefficients that
reconstruct each data point from its nearest neighbours when determining the underlying
lower-dimensional manifold.

There are three major steps in the LLE algorithm. The first is to determine the neigh-
bours in X-space. The second step is to solve for reconstruction weights Wij which allow
each point Xi to be reconstructed from its neighbours Xj . The final step is to compute
the embedding coordinates Y using the reconstruction weights W . We now describe these
three steps in more detail.

The first step is to determine the neighbours for each data point. This can be done in
various ways described above. For our purposes, we compute the K-nearest neighbours for
each data point.

The second step is to determine the reconstruction weights. To that end, we let Wij

denote the contribution of the jth data point to the ith reconstruction. Then, the weights
Wij are computed that minimise the following cost function:

E(W ) =
∑

i

‖Xi −
∑

j

WijXj‖2. (3.1)

which is known as the reconstruction error. The minimisation is performed subject to
two constraints. The first constraint is that Xi is reconstructed only from its K nearest
neighbours. Thus, we set Wij to 0 if Xj is not a neighbour of Xi. The second constraint
is that each set of local weights must sum to 1. Determining the optimal weights is a least
squares optimisation problem that is described in further detail in Appendix A of [9].

The final step is to compute the embedding coordinates Y using the weights W . This
is done by choosing the Yi that minimise:

Φ(Y ) =
∑

i

‖Yi −
∑

j

WijYj‖2. (3.2)

This specifies a quadratic form in Y which can be minimised by solving a sparse N × N
eigenvector problem. See Appendix B in [9] for more details.

Isomap: The Isomap algorithm consists of three primary steps:

1. Construct the neighbourhood graph G.
As with the LLE method, the first step of the Isomap method is to determine which
points are neighbours based on Euclidean distances between points in the input data
in Rp. The neighbours are obtained using one of the two basic approaches for finding
nearest neighbours outlined above. The information about the neighbourhoods is
collected into a weighted neighbourhood graph G that has a node for each data
point in the original input. The nodes of G are connected iff they are neighbours
and the weights on the edges connecting nodes are the corresponding Euclidean
distances between neighbouring data points in Rp. The graph G is particularly easy
to construct when the number of data points n is smaller than the dimension p of
the space in which the data is embedded.

2. Construct the matrix D containing the shortest paths between all pairs of points in
the graph G.
Isomap estimates the geodesic distances between all pairs of points on the manifold.
This is achieved by computing the shortest path distances between vertices in the
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weighted graph G constructed in the first step. Dijkstra’s algorithm is known to be
a good algorithm to find a shortest path in a weighted graph.

3. Apply Multi-Dimensional Scaling to the matrix D to determine the d-dimensional
embedding.
The final step of Isomap applies classical Multi-Dimensional Scaling (MDS) to the
matrix of D of graph distances as computed in the second step. The MDS algo-
rithm constructs an embedding of the data in a d-dimensional Euclidean space that
best preserves the intrinsic geometry of the manifold as determined by the relative
distances of the points. The particular embedding found results from minimising a
particular measure of error; the solution of this optimisation problem reduces to an
eigenvalue problem.

Some more comments are in order concerning the final step of the Isomap algorithm.
Given a set of n input vectors {X1, . . . ,Xn} ⊂ Rp, the Isomap algorithm returns a set of n
vectors {Y1, . . . ,Yn} ⊂ Rd where d < p is prescribed. Let

X = [X1, . . . ,Xn] ∈ Rp×n and Y = [Y1, . . . ,Yn] ∈ Rd×n

be rectangular matrices with the input and output column vectors stacked in sequence. The
pre-images Y of the input data X are found as the minimisers of a cost function

E(Y ) = ‖τ(D)− τ(DY )‖F , (3.3)

where ‖A‖F =
[∑

i,j |Ai,j |2
]1/2

is the usual Frobenius matrix norm. Further, in the defini-
tion of the cost function in (3.3), DY denotes the matrix of Euclidean distances between all
the columns of Y taken pairwise, i.e.,

(DY )i,j = ‖Yi −Yj‖ (i, j = 1, . . . , n).

The operator τ in (3.3) is defined as

τ(A) := −1
2
H(A ·A)H (3.4a)

where A · A is the Hadamard (entrywise) product of A with itself and H is a centering
matrix; explicitly,

(A ·A)i,j := A2
i,j , (3.4b)

Hi,j := δi,j −
1
n

(3.4c)

where n is the number of data points and deltai,j is the usual Kronecker delta. The operator
τ expresses the (Frobenius) distance between matrices using matrix products and thus makes
the minimisation of E(Y ) easier.

3.1.4 Optimal number of nearest neighbours. In what follows, we focus on the problem
of optimal choice of nearest neighbour numbers.

As proposed by Kouropteva et al. (with modifications recently suggested by Samko et
al.) [6], we choose a set of values of K from [Kmin,Kmax]. The simplest choice of Kmin in
our case is 1.

Next, for each K ∈ [Kmin,Kmax], we calculate the cost function:

E = ‖τ(D̄)− τ(DY )‖, (3.5)
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where

DY = {dy(i, j) = ‖Yi −Yj‖ =

√√√√ d∑
k=1

(Yk
i −Yk

j )2} (3.6)

is the matrix of Euclidean distances in the output space, while D̄ is different for different
spectral embedding algorithms. We focus on a generalization of LLE where we have

D̄ ≡ DX = {dx(i, j) = ‖Xi −Xj‖ =

√√√√ p∑
k=1

(Xk
i −Xk

j )2} (3.7)

As usual, the operator τ converts distances to inner products (to simplify the optimisation
procedure).

Then all K values where minima of E(K) are achieved will form the set SK of initial
candidates for the optimum value of K.

Finally, the nonlinear reduction algorithm should be run for each K ∈ SK . And Kopt

is determined by the following formula based on minimising the residual variance:

Kopt = arg min
K

(1− ρ2
DXDY

), (3.8)

where ρ is the linear correlation coefficient taken over all entries of the matrices DX and
DY which contain Euclidean distances between pairs of points in the input (dimension p)
and output (dimension d) spaces, respectively.

3.1.5 Choice of the cost function and how to avoid ill-posedness. The above choice of
the cost function in the form of (3.5) is not the only possible one. In the generalized LLE
we worked on, the cost function is taken as a measure of the reconstruction error:

E(W ) =
∑

i

‖Xi −
∑

j

WijXj‖2. (3.9)

To avoid ill-posedness it is essential to add constraints to this optimisation problem.
The most natural are related to the weights, and probably the simplest one is∑

j

Wij = 1. (3.10)

Further, as we observed in our experiments (described below), it might be essential to
precondition the Gram matrix by a regularization procedure.

3.1.6 Further improvements. The search for the neighbours can be improved further if
it is carried out with respect to the geodesic distance, rather than the Euclidean distance
as it is commonly done. Only a slight modification of the LLE algorithm is required in this
case [15]. In order to eliminate the necessity to estimate geodesic distances between faraway
inputs on the manifold, and hence to improve the efficiency, we can apply a semidefinite
embedding as recently proposed by Weinberger et al.

Finally, further modifications of the spectral embedding algorithms, described here, can
be introduced with the stochastic neighbour embedding which could be useful for relatively
noisy data.
Potential gaps in existing literature: There is a lot of work and experience to draw
upon from the machine learning community to help with the problem of dimensionality
reduction for microarray data. However, there are some features of algorithms for nonlinear
dimensionality reduction described in the existing literature that complicate the present
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study rather than making matters more clear. We describe some of these issues with the
hope that they can be resolved in later studies.

A number of nonlinear dimensionality reduction algorithms are based on the assumption
that there exists a nonlinear manifold embedded in Rp that underlies the given set of data.
The input of the algorithms usually consists of a set of n data points in Rp and possibly
the dimension d of the manifold sought. The output of the algorithms typically consists of
a set of n vectors in Rd with d < p that would be the pre-images of the input data vectors
in a presumably lower-dimensional space. However, manifolds consist of uncountably many
coordinate charts (smooth mappings from Rd into Rp whose ranges are contained in the
points on the manifold) in an atlas that cover the whole manifold. It is not typical for a
single coordinate chart to cover the whole manifold. Moreover, when the output from a
dimensionality reduction algorithm consists of the pre-images of the data under a particular
coordinate chart, it is not obvious which coordinate chart is being used. Some charts have
greater utility than others in different regions of the manifold.

To clarify the preceding discussion, assume that the manifold from which the input
data is sampled is the unit sphere in R3 (i.e., p = 3 and d = 2). Consider the mappings
ψ1 : (0, π)× (π, π) → R3 and ψ2 : {(x, y) ∈ R2 : x2 + y2 < 1} → R3 that are defined by

ψ1(φ, θ) := (cos θ sinφ, sin θ sinφ, cosφ) (φ, θ) ∈ (0, π)× (π, π)

ψ2(x, y) := (x, y,
√

1− x2 − y2) (x, y) ∈ {(x, y) ∈ R2 : x2 + y2 < 1}.

Both of these charts cover portions of the unit sphere in R3. However, while ψ1 covers
the region near the point (0, 0, 1) relatively poorly due to a coordinate singularity in ψ1

near φ = 0, the chart ψ2 can be used near that region without difficulty. Similarly, the
mapping ψ2 encounters difficulty near the boundary of the unit disk in R2 for exactly the
same reason whereas ψ1 has quite well-behaved derivatives near the region where φ = π/2.
As such, the output of algorithms such as LLE or Isomap consist of vectors in Rd , but it is
in no way obvious which chart has been selected and whether it is one that is appropriate
in the region of the manifold being sampled.

Another problem shared by many algorithms is the number of heuristic parameters
inherent even in deterministic algorithms. For instance, in LLE, the dimension d of the
lower-dimensional manifold on which the sampled data lies is an input parameter of the
algorithm. (Admittedly, the Isomap algorithm does not share this particular shortcoming
in that it starts from d = 1 and increments d until a suitable value of d is determined.)
Other heuristic choices in the development of the algorithms include the number of nearest
neighbours to choose, the method by which nearest neighbours are measured, and the choice
of metric in the objective function to minimise in finding the reconstruction weights.

The most perplexing difficulty arises when trying to compare the performance of dis-
tinct algorithms. If the output of algorithm A is a set of pre-images of the data under
one coordinate chart and the output of algorithm B is a similar set of pre-images, does it
follow that the outputs can be compared? This is a vexing issue for assessing the numerical
accuracy and the asymptotic complexity of dimensionality reduction algorithms. Conver-
gence properties of, say, numerical approximation schemes for partial differential equations,
can be estimated by numerical experiments where the exact solution is known even when
convergence proofs are unattainable. Such numerical experiments are invaluable when new
schemes are suggested for comparison to existing frameworks. It does not seem that the lit-
erature on nonlinear dimension reduction algorithms has analogous criteria for comparison
of algorithms.
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3.2 Kernel Principle Component Analysis (KPCA).
3.2.1 Description of the PCA method. Principal component analysis (PCA) is one of

the statistical methods to extract the patterns in the data and to represent the original data
in another way based on their similarity and dissimilarity. PCA is not only widely-used for
pattern extraction but also for dimensionality reduction and data visualization. Once the
patterns hidden in the data are identified, we can project the data into lower dimension by
selecting several most important patterns and without losing too much information. As one
might expect, it is nontrivial to identify these patterns in the high-dimensional data.

PCA is essentially a basis transformation. Suppose the data points are given by
{X1,X2, · · · ,Xn}, where Xi ∈ Rp and are centered, i.e., such that

∑n
i=1 Xi = 0. The

covariance matrix is then defined by

C =
1
n

n∑
i=1

XiXT
i .

Since the orthonormal eigenvectors of the covariance matrix form a basis in space, we can
express the data in terms of the eigenvector basis, instead of Cartesian coordinates. Actually,
the eigenvectors show the directions of variance in the data. In addition, the corresponding
eigenvalues indicate the proportions of the variances. The eigenvector corresponding to the
largest eigenvalue is called the principal component.

It will be easier to analyse the data if their dimension is much smaller. Therefore, we
can project the data onto a lower-dimensional space. Then the data are approximated by
the linear combination of the selected d eigenvectors (d < p) and truncating the tails of the
vectors creating vectors of length d. The value of d may be decided by the specific need,
such as a value of two or three for visualization, or by minimising the difference between
the original data and its approximation.

3.2.2 Description of the Kernel PCA method. The principle component analysis has a
very long history and is known to to very powerful for the linear case. However, the sample
space that many research problems are facing, especially the sample space of mircoarray
data, are considered nonlinear in nature. One reason might be that the interaction of the
genes are not completely understood. Many biological pathways are still beyond human
comprehension. It is then quite naive to assume that the genes should be connected in a
linear fashion.

To handle nonlinear spaces, a natural idea is to make a suitable transformation that
tries to make the transformed space linear. Although this idea has been mentioned in the
literature many times, the breakthrough did not come until the last 20 years during which
time the computational issue has been resolved.

In order to capture nonlinear patterns, it is often useful to consider a nonlinear trans-
formation of the original variables. For example, given two random variables, we might
consider only the linear combination, i.e., a1x1 + a2x2. To capture any nonlinear relation-
ship, we might want to consider the ensemble of

E = {X1, X2, X
2
1 , X

2
2 , X1X2, X

3
1 , X

3
2 , X1X

2
2 , X

2
1 , X2, · · · }.

Although this can be done, the computational burden associated with the expansion
into a higher-dimensional space is very costly. Given the fact the microarray data already
has a very high dimensionality to begin with, this does not appear to be feasible.

To be more specific, we consider a mapping:

K : X −→ F (3.11)



Nonlinear Dimension Reduction for Microarray Data (Small n and Large p) 11

where X and F are the sample and output spaces, respectively, and K is the kernel function.
However, the Kernel PCA method does exactly this seemingly impossible task. The key

element of the Kernel PCA is that the original space is transformed into an output space
through kernel functions. Kernel functions are designed to capture the nonlinear nature of
the original space by expanding the basis functions into a much higher-dimensional space.
However, any computation after the transformation can be done using the kernel function
and the inner product of the original space. In other words, no actual transformation is
necessary, and the results are be obtained without significant computational cost.

Given f ∈ F and g ∈ F , we then have

< f, g >=
n∑

i=1

n∑
j=1

αiαjK(xi, xj). (3.12)

Detailed discussions of the Kernel PCA can be found in [12].
3.2.3 Choice of kernel functions and future research. There are many kernel functions

that have been proposed in the literature. Gaussian functions are commonly used. However,
this is no guarantee that a Gaussian function would be applicable all the time. One possible
approach is to use the idea of model averaging. To be more specific, one could use an array
of kernel functions and evaluate each kernel function for its effectiveness using some loss
function, for example, the mean squared error (MSE).

4 Numerical experiments and results

4.1 Available datasets. We now describe the two types of datasets of interest to us:
a microarray dataset from the NRC and some synthetic datasets which we have designed.

4.1.1 Microarray dataset. The NRC provided us with an AML microarray dataset of
genetic data which sampled 7129 genes in 72 patients; this corresponds to 72 vectors of data
in R7129. The patterns in the microarray data are nonlinear and are thus quite complicated.
In addition, the data are noisy due to the nature of the microarray experiment.

4.1.2 Synthetic datasets. The papers of Roweis and Tannenbaum make extensive use of
test data sets for their algorithms. These include an S-shaped ribbon (a two-dimensional
manifold embedded in R3, the standard unit sphere S2 ⊂ R3, and a number of variants
involving translations of a fixed image. These examples support the strength of these
algorithms in the event that the number n of samples available is larger than the dimension
p of the space from which the data are sampled. Unfortunately, this is not the case with
cell microarray data.

We advocate generating synthetic test data known to lie on a manifold with known
structure of arbitrary dimensions as a means of testing prospective algorithms. The proce-
dure mentioned here was developed using random sampling on the unit sphere Sd ⊂ Rd+1.
This does in fact require some care; randomly sampling points on the unit hypersphere
needs to be done in a way to ensure that samples are not clustered near poles. Fortunately,
a very simple framework for doing so is provided by Knuth.

1. Generate random vectors Y1, . . . ,Yn ∈ Rd+1, each component being observations of
a random variable with Gaussian distribution with mean at 0.

2. Yk 7→ Yk/‖Yk‖2 (k = 1, . . . , n) generates set of n random vectors uniformly-
distributed on the unit sphere in Rd+1.

3. Embed vectors Yk into column vectors Xk ∈ Rp by padding with zeros.
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The vectors generated thusly lie on the unit sphere Sd ⊂ Rp. This procedure can be
adapted to make data points from the manifolds Sd1 × Sd2 embedded in Rp or any similar
Cartesian product manifold. To obscure the obvious manifold structure of a set of vectors
in Rp with zeros in most of the components, a number of strategies can be used.

1. Make the substitutions Xk 7→ PXk where P is a random p× p permutation matrix.
2. Make the substitutions Xk 7→ QXk where Q = I − 2uuT is a random orthogonal

Householder reflection (‖u‖2 = 1).
3. Make the substitutions Xk 7→ Xk + a where a ∈ Rp is a random translation.
4. Add Gaussian noise to all of the components of each vector.

4.2 Numerical experiments. For our numerical experiments, we tested the LLE
algorithm on the NRC microarray dataset described above. In particular, we performed a
leave-one-out cross-validation experiment and measured the reconstruction error for several
combinations of d and K.

Leave-one-out is a cross-validation technique in which the data is divided into n subsets
each corresponding to one data point. Training on the data is performed h times, each
time using only the omitted subset to compute the error criterion of interest. The following
pseudo-code demonstrates the use of the leave-one-out technique for the LLE algorithm:

for i = 1:n
1. Remove X_i from X, i.e., set Xhat_i = X\{X_i}.
2. Compute the manifold on Xhat_i.
3. Project X_i onto Xhat_i.
4. Compute the reconstruction error for X_i.

end

Then, the reconstruction error is the sum of the reconstruction errors for each of the n
data points.

We repeated this experiment on the filtered dataset (using the result from the Random
Forest algorithm described above). Before discussing our numerical results, we describe
three main metrics for analyzing the error in the nonlinear dimension reduction process.

4.3 Measures for error analysis. There are three main measures for the error in
the nonlinear dimension reduction algorithms: the distortion of the distances, the residual
variance, and the reconstruction error.

To measure the distortion of the distances, we compute E(W ) =
∑

i<j Wij(Dij −∆ij)2,
where Dij is the distance between the points in Rp, and ∆ij is the corresponding distance
in Rd. Although an interesting error metric, we have not studied this metric in favor of
pursuing others.

The measures for characterizing the quality of the nonlinear dimension reduction pro-
cedure described here are based on the following two choices:

• Minimisation of the generalized reconstruction error:

Ey =
1
n

∑
i

‖Xi − PXi‖2, (4.1)

where P is the projection operator, P 2 = P such that Yi = PXi. Note that we go
from a space of dimensionality p to a space of dimensionality d where for the linear
pieces we have
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var(Y) = Tr(PCP T ), P =
d∑

α=1

eαeα
T , (4.2)

C =
1
n

∑
i

XiXT
i =

p∑
α=1

λαeαeα
T , (4.3)

λ1 ≥ λ2 ≥ ... ≥ λp. (4.4)

• Minimisation of the residual variance:

1− ρ2
DXDY

(4.5)

is as discussed above (see (3.8)).
Determining the error of the reduction with (4.5) was proposed for the original LLE algo-
rithm [8]. Note, however, that since all the available algorithms require computing spectral
characteristics of the underlying data in one form or another, the computational dichotomy
of spectra may represent a non-trivial problem in practice [7]. Nevertheless, recent applica-
tions of spectral embedding non-linear reduction techniques, such as LLE and Isomap, to
high-density microarray data sets have demonstrated their robustness [5, 2]. Finally, note
that in the linear case, the approach based on (4.5) is the standard maximisation of variance
subspace:

var(Y) =
1
n

∑
i

‖PXi‖2, (4.6)

and is equivalent to the procedure (4.1) based on the minimum reconstruction error.

4.4 Numerical results. Now that we have described three possible error metrics, we
return to a description of the results from obtained from the LLE algorithm by running
the leave-one-out cross-validation experiment on the NRC microarray dataset. We will also
describe the results from running leave-one-out on the corresponding filtered dataset.

The following two figures show the results from the leave-one-out cross-validation ex-
periment using LLE on the microarray and filtered microarray datasets. We see from both
figures that the best results are obtained for roughly K = 12 nearest neighbours. This
result is independent of the choice of d. When a greater number of nearest neighbours is
used, the LLE algorithm is more expensive, and there is little to no additional benefit, i.e.,
the reconstruction error decreases little. The figures also demonstrate that the reconstruc-
tion error is minimised for low-dimensional manifolds of smaller dimension. This result is
also independent of whether or not filtering was applied. As was expected, the amount of
reconstruction error decreased when filtering was applied to the microarray dataset before
the leave-one-out cross validation experiment was performed; this demonstrates the success
of the filtering process.

5 Discussion and recommendations

As discussed above, support vector machines may be useful for gene selection when
combined with the random forest algorithm. There are other issues to explore within the
filtering context such as filtering time trends.
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Figure 2 Leave-one-out cross validation results for the LLE algorithm on the NRC mi-
croarray (left) and filtered microarray (right) datasets. These figures demonstrate that
12 is a good choice for the number of nearest neighbours in this algorithm. In addition,
the reconstruction error is smaller for lower-dimensional manifolds and for the filtered
microarray dataset.

Within Kernel PCA, the choice of kernel function should be investigated to find the
most useful type of kernel for the microarray and synthetic datasets.

There are several avenues to pursue within the spectral embedding framework for nonlin-
ear dimensionality reduction. First, we would like to experiment with the Isomap algorithm
and compare the results of that algorithm with the LLE experiments. Comparisons should
also be made with the other spectral embedding algorithms. Thus far, our results indi-
cate that the Random Forest and LLE algorithms were useful for filtering the genes and
nonlinear dimensional reduction as tested on the NRC microarray dataset.

A second avenue to explore is the choice of the nearest neighbours in LLE and other
spectral-embedding algorithms. There are many options for choosing the neighbours within
LLE such as the using the K-nearest neighbours, the points within a ball of a specified
radius, or using an adaptive local distance metric to choose the neighbours flexibly within
various regions. It is expected that an adaptive choice for the neighbours will produce
improved results. Above it was discussed how to pursue an optimal number of neighbours.

A third avenue that needs to be investigated is the choice of cost function. Our exper-
iments measured the reconstruction error because this metric was of interest to the NRC,
our industrial partner. It is not clear which error metric would be the most useful for the
general case, as we have not run any experiments using the distortion of the distances or
the residual variance as our error metric. We have not run any experiments on the synthetic
datasets which we have designed; tests will need to be run on this dataset for us to be able
to understand how these algorithms perform on additional datasets.

The final issue we have identified for investigation is the choice of cross-validation tech-
nique. Our experiments used the leave-one-out cross-validation technique. This can be
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generalized to the leave-v-out technique, which is a more complicated version of leave-one-
out in which all possible subsets of v data points are left out of the training set. As the
choice of cost function changes, the most successful cross-validation technique may change
as well.

Numerous experiments need to be performed on the microarray and synthetic datasets
in order for us to better understand the performance of the algorithms described in this
report on filtering of genes and the nonlinear dimensionality reduction problem.
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1 Problem description

In this report, we consider the problem concerned with incorporating estimation error
into optimal consumption and portfolio selection in continuous time. The original optimal
consumption and asset allocation problem in continuous time was solved by Merton in a
series of papers [4, 5] and became widely known as “Merton’s Problem”. Merton made
the assumption that the asset price processes {Si}N

i=1 are given by Geometric Brownian
Motion (GBM), where the parameter values are known. He was able to prove that the
investment opportunity set can be generated by two portfolios or mutual funds of assets,
which themselves obey Geometric Brownian Motion. This result is sometimes known as
a two-fund separation theorem, and does not depend on the market being in equilibrium.
Merton utilized the separation theorem in his development of the Inter-temporal Capital
Asset Pricing Model in [6], but the mutual fund theorem is only dependent on the assumed
properties of the asset price processes.

Subsequent work on this problem has sought to generalize Merton’s work in numerous
ways. For instance, some authors have considered more general asset price processes than
GBM, e.g. Ito processes with deterministic (and even stochastic) time-dependent drift and
diffusion parameters, and other general diffusion and Markov processes, or general semi-
martingales. In the latter case, the additional assumption that the market is complete
(or more generally, effectively complete) is required, and the method of solution uses the
so-called Cox-Huang-Pliska method [9], which involves the use of the Martingale Represen-
tation Theorem. Another generalization of the Merton problem involves the inclusion of
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stochastic income for the investor, with various degrees of generality regarding the structure
of the income process and transaction costs, and with investor preferences given by expected
utility functions that are non-time-separable (e.g. recursive or stochastic differential util-
ities), or even non-expected utility preference orderings. However, most of the published
work on the consumption/portfolio allocation problem in continuous time has assumed that
the parameters of the asset price processes are known with perfect certainty [3, 2, 10, 8].
In reality, these parameters must be estimated, and there will always be some measure of
estimation risk [8, 10].

The result of the unavoidable nature of estimation risk is that the optimized consump-
tion/portfolio selection strategy will only truly be optimal in the unlikely event that there
is no estimation error; in all other cases, it will be suboptimal. The goal of the workshop
is to formulate the optimal consumption and portfolio investment problem such that, given
any data sample of the asset price processes, we have a prescription that associates to that
sample an optimal strategy; note that this prescription is dynamic, since the sample will
enlarge over time, likely resulting in a different optimal strategy from the previous one,
going forward. To eliminate unnecessary complications, it would be easiest to work within
the original Merton model, except that we wish to consider the case that investors do derive
benefit from end-of-period wealth (instead of the overall consumption), and investor wealth
is constrained to be nonnegative.

2 Mathematical models

To address the issue related to estimation error and investment strategies, we recall the
Merton framework of optimal asset allocation in continuous time. To simplify the discussion,
we consider only asset allocation and ignore consumption in this report. Following Merton’s
approach [4, 5], we assume that

• we have an initial wealth w0 at time t0;
• we can choose a combination of one risky asset (St) and one risk-free asset (Rt), e.g.

a bond;
• St follows the GBM

St

S0
= exp

[(
µ− σ2

2

)
t + σBt

]
(2.1)

with drift µ and volatility σ;
• the risk-free asset has a rate of return r, and is given by

Rt

R0
= exp(rt). (2.2)

Let πt be a fraction of wealth allocated to St such that the utility of wealth is maximized
at the end of a fixed period, i.e.,

J = max
πt

E [u(WT )|Ft] , (2.3)

where u(·) is a (convex) utility function and the wealth of the portfolio is given by

Wt = πt
Wt

St
dSt + (1− πt)

Wt

Rt
dRt. (2.4)

With the assumption that the parameters µ and σ are known with certainty, Merton [4, 5]
obtained analytical expressions for the dynamic allocation strategy, πt when the utility
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function takes certain forms. For example, when

u(w) =
wp

p
, p < 1, (2.5)

the optimal allocation is given by

πt =
µ− r

(1− p)σ2
, (2.6)

and the value function is given as

J =
W p

p
V, (2.7)

where

V = exp
[(

pr +
p(µ− r)2

2(1− p)σ2

)
(T − t)

]
. (2.8)

2.1 Asset allocation under estimation error. During the workshop, we decided
to approach the problem as follows. We assume that the risky asset follows the stochastic
equation (2.1), where the return of the asset is given by

µ = µ0 + σ0U, (2.9)

where U ∼ N(0, 1). Solving the asset equation (2.1) yields

St

S0
= exp

[(
µ0 −

σ2

2

)
+ σXt

]
, (2.10a)

where
Xt = aUt + Bt, a =

σ0

σ
. (2.10b)

We now write
dXt = Htdt + KtdZt, (2.11a)

where Zt is a Brownian motion with respect to the same filtration as the asset St. It can
be shown that

Ht = agtXt, Kt = 1, (2.11b)
where

gt =
a

1 + a2t
. (2.11c)

Thus,
dXt = agtXtdt + dZt.

Applying Ito’s lemma, we can rewrite the process for the risky asset in terms of the
observable parameters:

dSt

St
= (µ0 + σagtXt)dt + σdZt. (2.12)

Therefore, the wealth process can now be written as
dWt

Wt
= [r + πt(µ0 + σagtXt − r)] dt + πtσdZt. (2.13)

We now write the value function defined in (2.3) as J = J(Wt, Xt, t), and apply Ito’s lemma
(note J is a martingale when we use the optimal allocation strategy) to obtain

dJ = (Jt +AtJ)dt + JwdWt + JxdXt, (2.14a)
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with

AtJ =
1
2
Jxx +

π2
t

2
σ2w2Jww + πtσwJwx. (2.14b)

Because J is a martingale, we have Jt +AtJ = 0 when πt is optimal; or

Jt+
1
2
Jxx+rwJw+agtxJx+

1
2
π2

t σ
2w2Jww+πt [(µ0 + aσgtx− r)wJw + σwJwx] = 0, (2.15)

with J(w, x, T ) = u(w). Using the constant relative risk aversion (CRRA) utility u(w) =
wp/p, and assuming J = V (x, t)u(w), we obtain the following Hamilton-Jacobi-Bellman
(HJB) equation for V :

Vt +
1
2
Vxx + agtxVx + prV

+max
πt

{
p(p− 1)

2
π2

t σ
2V + pπt [(µ0 + σagtx− r)V + σVx]

}
= 0 (2.16)

for p > 0, and

Vt +
1
2
Vxx + agtxVx + prV

+min
πt

{
p(p− 1)

2
π2

t σ
2V + pπt [(µ0 + σagtx− r)V + σVx]

}
= 0 (2.17)

for p < 0. The terminal condition is V (x, T ) = 1. The allocation strategy is given by the
first order condition

π∗t =
µ0 + aσgtx− r

(1− p)σ2
+

Vx

(1− p)σV
. (2.18)

The first order condition is only the necessary condition for optimality. Applying the second
order condition yields

p(1− p)σ2V < 0, for p > 0; and p(1− p)σ2V > 0, for p < 0. (2.19)

Because V > 0 and p < 1, this condition is satisfied for both positive and negative values
of p.

2.2 An alternative formulation. One approach to incorporate estimation error is
to treat the problem as an optimal asset allocation problem with learning. In [1], Brennan
analyzes the effect of uncertainty about the mean return on the risky asset on the portfolio
decision, while assuming the volatility is a known constant. To be more specific, he assumes
that the change in the conditional expectation of the stock return is given by

dm =
vt

σ2

(
dS

S
−mdt

)
, (2.20)

where the conditional variance, vt, is determined by its initial value v0 and the differential
equation

dvt = − v2
t

σ2
dt. (2.21)

We can solve for the conditional variance to get

vt =
v0σ

2

v0(t− t0) + σ2
. (2.22)
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Using Bellman’s principle, under the optimal allocation policy, we have E[dJ ] = 0, which
leads to the following Hamilton-Jacobi-Bellman (HJB) equation (after applying Ito’s lemma):

Jt + rwJw +
v2

2σ2
Jmm + max

πt

[
πt(m− r)wJw + πtvwJwm +

1
2
(πtσw)2Jww

]
= 0, (2.23)

with terminal condition J(w,m, T ) = wp/p. If we assume J = V wp/p, (2.23) can be further
simplified as

Vt + rpV +
v2

2σ2
Vmm + max

πt

p

[
πt(m− r)V + πtvVm +

p− 1
2

(πtσ)2V
]

= 0 (2.24)

for p > 0 and

Vt + rpV +
v2

2σ2
Vmm + min

πt

p

[
πt(m− r)V + πtvVm +

p− 1
2

(πtσ)2V
]

= 0 (2.25)

for p < 0. The terminal condition now becomes V (m,T ) = 1.
Once again, the optimal allocation strategy is given by the first order condition

π∗t =
m− r

(1− p)σ2
+

vVm

(1− p)σ2V
. (2.26)

Note that π∗t consists of two terms where the first term, denoted by πm
t , corresponds to the

ad hoc strategy in which Merton’s formula is used by replacing µ with m. Note that the
Merton’s formula should only be applicable when there is no uncertainty, in which case the
initially estimated return m0 is used. The second term in (2.26) is the “correction” due
to learning. This correction reflects how well the ad hoc strategy approximates the true
strategy.

2.3 Relationship between the two formulations. We now show that the two ap-
proaches described above are equivalent. Note that the two variables m of (2.23) and x of
(2.16) are related by the following equation

m = µ0 + σagtx = m0 + σ0gtx. (2.27)

Treating (2.27) as a coordinate transformation, and using simple straightforward calcula-
tions, we have the following:

Vt|x = Vt|m + Vm
∂m

∂t
= Vt + σag′txVm, (2.28a)

Vx = Vm
∂m

∂x
= σagtVm, (2.28b)

Vxx = (σagt)2Vmm. (2.28c)

Substituting these equations into the HJB equation (2.16) (with πt the optimal strategy),
we obtain

Vt +
1
2
(σagt)2Vmm + [σa2g2

t x + pσ2agtπt + σag′tx]Vm

+p

[
r + πt(µ0 + σagtx− r) +

p− 1
2

σ2π2
t

]
V = 0. (2.29)

Using (2.11c), we have g′ = −ag2
t . Noting that v0 = σ2

0, we obtain

σagt =
σa2

a2t + 1
=

σσ2
0

σ2
0t + σ2

=
σv0

v0t + σ2
=

v

σ
,
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and (2.29) becomes

Vt +
v2

2σ2
Vmm + pvπtVm + p

[
r + πt(m− r) +

p− 1
2

σ2π2
t

]
V = 0, (2.30)

which is the same as (2.31) derived by Brennan [1] when πt is optimal.

Remark 2.1 In [1], the HJB equation is solved directly using a finite difference method.
In this report, we will present a more efficient method, which reduces the problem to solving
a system of ordinary differential equations instead of the highly nonlinear partial differential
HJB equation. We will also extend the model by including constraints on the allocation
strategy. In practise, there are often restrictions on short selling of the risky asset as well as
on the amount one can borrow. Therefore, we will impose a constraint on borrowing as well
as on short-selling by considering portfolio strategies in a bounded region, i.e., 0 ≤ πt ≤ 1.
Finally, learning, as well as portfolio selection, are carried out in discrete time. Therefore,
it is of practical interest to study the problem under discrete time settings. We will present
the continuous time approach first, and defer discussion of the discrete time approach to
later in the report.

2.4 Asset allocation under estimation error and borrowing constraints. It is
straightforward to implement the constraint 0 ≤ πt ≤ 1. Bellman’s principle applies in a
similar fashion and the simplified HJB equation can be written as

Vt + rpV +
v2

2σ2
Vmm + max

0≤πt≤1
p

[
πt(m− r)V + πtvVm +

p− 1
2

(πtσ)2V
]

= 0, (2.31)

where the value function is J = V wp/p, and the terminal condition is also the same
V (m,T ) = 1. We have implicitly assumed that p > 0. Otherwise, we take the minimum
instead of the maximum.

The asset allocation strategy can be obtained by applying the first order condition to
(2.31), which is

πt = max{0,min{1, π∗t }}, π∗t =
m− r

(1− p)σ2
+

vVm

(1− p)σ2V
. (2.32)

3 Solution methodologies

In this report we discuss two methods for solving the HJB equation: direct numerical
method and a dimension reduction technique.

3.1 Numerical method for solving the Hamilton-Jacobi-Bellman (HJB) equa-
tion. For simplicity, instead of solving (2.16) or (2.17) backwards in time from terminal
time T , we introduce the following change of variable:

s = T − t, V (x, t) −→ V (x, s), gt −→ gs =
a

1 + a2(T − s)
.

We thus get an initial value problem for V :

Vs =
1
2
Vxx + [pπsσ + agsx]Vx + p max

πs

[
r + πs (µ0 + σagsx− r) +

(p− 1)π2
sσ

2

2

]
, (3.1)
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with initial condition V (x, 0) = 1. In this case, using the first order condition, the optimal
allocation strategy (unconstrained) is

πs =
µ0 + σagsx− r

(1− p)σ2
+

Vx

(1− p)σV
, (3.2)

with constraints 0 ≤ πs ≤ 1.
At this juncture, we must fully specify the conditions on V for large x. Because the

partial differential equation (PDE) is defined for x ∈ R, we need to truncate the compu-
tational region to x ∈ [−Xmax, Xmax]. This requires us to impose boundary conditions at
the endpoint ±Xmax. Assuming that for large x, the solution V behaves like the Merton
solution V ∼ exp(sp[r + (µ0 − r)2/(2(1 − p)σ2]), we shall impose the time-varying Robin
conditions

Vx =
p(x− r)s
(1− p)σ2

V, x = ±Xmax. (3.3)

Even though other choices of numerical boundary conditions are possible, we will provide
more insights in Section 3.2 to show that (3.3) is probably the best choice.

A few qualitative comments are in order. First, the same method can be applied to
(2.24) or (2.25). Second, the constrained problem can be solved similarly. In all the cases,
the PDE is highly nonlinear. However, one may naively expect that the linear diffusive term
will ameliorate numerical difficulties, as long as p is much smaller than 0. This observation
motivates the choice of the method of lines for discretizing the PDE.

In the x direction, we pick a mesh size h � 1, and define a uniform grid {xi}N
i=1 on

[−Xmax, Xmax]. We use a centred difference scheme to evaluate both the first and second
“spatial” derivatives, taking care to incorporate the Robin condition specified above. The
resulting nonlinear system of ordinary differential equations (ODEs) is solved using a built-
in Matlab routine.

3.2 A dimension reduction solution method. Even though we could apply the
numerical method directly to the HJB equations, as in [1] for the unconstrained case, we
are able to find a semi-analytic method that gives more insight into the solution behaviour.
In addition it is much more efficient and avoids the problem of seeking artificial boundary
conditions. Motivated by the Merton solution (2.8), we seek the solution in the following
form

V = exp[α(t)(m− r)2 + β(t)(m− r) + γ(t)], (3.4a)

where α, β and γ are functions of t. It is a simply calculation to verify from (3.4a) that

Vt =
[
α̇(m− r)2 + β̇(m− r) + γ̇

]
V, (3.4b)

Vm = [2α(m− r) + β]V, (3.4c)

Vmm =
[
2α + (2α(m− r) + β)2

]
V, (3.4d)

where the dots denote the derivative with respect to time.
3.2.1 Optimal allocation strategy. Using (3.4a)–(3.4d), the optimal allocation becomes

π∗t =
2αv + 1
(1− p)σ2

(m− r) +
βv

(1− p)σ2
. (3.5)
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Substituting (3.4b)-(3.5) into (2.24) and rearranging the terms, we obtain

α̇ +
2v2

σ2
α2 +

p

2(1− p)σ2
(1 + 2αv)2 = 0, (3.6a)

β̇ = 0, (3.6b)

γ̇ + rp +
( v

σ

)2
α = 0, (3.6c)

subject to

α(T ) = β(T ) = γ(T ) = 0. (3.6d)

We note immediately in this case that β ≡ 0. Thus the optimal allocation strategy becomes

π∗t =
2αv + 1
(1− p)σ2

(m− r), (3.7)

and the problem at hand becomes extremely simple: in order to find the optimal allocation
strategy, we only need to solve (3.6a), an ordinary differential equation (ODE) instead of the
full HJB equation. Furthermore, the optimal asset allocation strategy is a linear function
of m. Because the Merton solution is

πm
t =

m− r

(1− p)σ2
, (3.8)

the difference between the current strategy and the Merton solution is also a linear function
of m, i.e.,

∆πt =
2αv

(1− p)σ2
(m− r). (3.9)

We note that the value of γ has no effect on the allocation strategy, and its value is only
needed if we want to compute the value function V (or J). The value function defined in
(3.4a) becomes

V = exp[α(t)(m− r)2 + γ(t)], (3.10)

which takes a similar form as the original Merton solution (2.8). Furthermore, when v � σ
and v � 1, (3.6a) and (3.6c) can be approximated by

α̇ +
p

2(1− p)σ2
= 0, (3.11a)

γ̇ + rp = 0. (3.11b)

In this case we recover the Merton solution. This explains that the numerical boundary
condition (3.3) is indeed a very good choice.

Finally, we note that there is a difference between the Merton strategy (where m is a
constant) and the Merton’s solution. If we use Merton’s solution as an allocation strategy
for stochastic return, we would be using the ad hoc strategy, and the solution of the value
function could also be obtained using a similar approach, which is shown below.

3.2.2 Solution using the ad hoc strategy. When the ad hoc strategy

πm
t =

m− r

(1− p)σ2
(3.12)
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is used, the HJB equation (2.31) can also be simplified by substituting (3.4b)-(3.4d) and
(3.12) into (2.31). In this case, we need to solve the following system of three ODEs

α̇ +
2v2

σ2
α2 +

1 + 4vα

2(1− p)σ2
= 0, (3.13a)

β̇ + 2
( v

σ

)2
αβ +

pvβ

(1− p)σ2
= 0, (3.13b)

γ̇ + rp +
( v

σ

)2
(

α +
β

2

)
= 0, (3.13c)

subject to
α(T ) = β(T ) = γ(T ) = 0. (3.13d)

Note that from (3.13b) and β(T ) = 0, we have β ≡ 0. As a consequence, the equation
for γ is the same as (3.6c). Compared with the solution using optimal allocation, the
solution using the ad hoc strategy takes a similar form with minor differences, reflected in
the equations for α. The difference in the equations for α in the two equations (3.6a) and
(3.13a) is 2v2α2/(1− p)σ2. Since (v/σ)2 is normally small, the difference in the solution is
also small except when α is large.

Remark 3.1 For the unconstrained case, the solution methodology used here is very
effective and provides insights into the behaviour of the solution. It also gives justification for
the boundary conditions when numerical methods are applied directly to the HJB equation.
However, for the optimal allocation with constraints, the methodology is not applicable in
general, despite the fact that similar procedure can be applied to πt = 0 or 1 separately.
It is possible that approximate solutions can be found under special circumstances, such as
when v/σ � 1 and v � 1. Since we can solve the HJB with constraints using the finite
difference method, we will not discuss it any further in this report.

4 Numerical experiments

4.1 Outline. We now describe some numerical experiments and our investigations
include:

• The allocation strategy in the presence of uncertainty in the parameters, but without
constraints on the allocation (Brennan’s approach);

• The allocation strategy with constraints;
• A comparison of the actual allocation strategy to the “ad hoc” strategy obtained by

simply replacing µ = m = µ0 + σagtx in the Merton solution, i.e. using

πm
t =

m− r

(1− p)σ2
=

µ0 + aσgx− r

(1− p)σ2
;

• Computations using the simpler dimension reduction formulation when applicable.

4.2 Results. In order to compare with the results presented by Brennan [1], in this
section we make the following choices for parameters:

• Rate of return on risk-free asset r = 5%;
• Volatility of the market σ = 20.2%;
• Initial mean return of the risky asset µ0 = 13%;
• Variance around the mean return v0 = 0.02432;
• Risk aversion parameter p = −2 and p = 0.2;
• Time horizon T = 5 and T = 20;
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• Size of the computational domain for HJB is set to be Xmax = 0.5 (or mmax = 0.5
when Brennan’s formulation is used).

Table 1 Comparisons of the optimal allocations obtained by solving the HJB, using the
dimension reduction technique as well from the case with constraint. The results from
Brennan [1] are also presented.

p T σ π∗t πm
t πm

t − π∗t
HJB (2.24) -2 5 0.202 0.6236 0.6535 0.02995
Brennan [1] 0.624 0.654 0.030
Dimension reduction (3.5)-(3.6c) 0.6235 0.6535 0.03007
HJB (2.31) 0.6236 0.6535 0.02995
HJB (2.24) -2 20 0.202 0.5497 0.6535 0.1039
Brennan [1] 0.551 0.654 0.103
Dimension reduction (3.5)-(3.6c) 0.5478 0.6535 0.1039
HJB (2.31) 0.5497 0.6535 0.1039
HJB (2.25) 0.2 5 0.202 2.4960 2.4507 -0.0453
Brennan [1] 2.495 2.451 -0.044
Dimension reduction (3.5)-(3.6c) 2.4959 2.4507 -0.0451
HJB (2.31) 1 2.4517 1.4507
HJB (2.25) 0.2 20 0.202 2.6449 2.4507 -0.1941
Brennan [1] 2.643 2.451 -0.192
Dimension reduction (3.5)-(3.6c) 2.6419 2.4507 -0.1997
HJB (2.31) 1 2.4507 1.4507

In Table 1, we have presented the results obtained using the finite difference method
for HJB equations (2.24) and (2.25), the dimension reduction method, and those from
Brennan [1]. We have also presented the results for the constrained allocation case, obtained
by solving the HJB equation (2.31) by finite difference method. It can be seen that all the
results for the unconstrained case agree with each other. It is interesting to note that
when the constraint is not active, the values of the optimal allocation stay unchanged. As
pointed by in [1], the correction to the ad hoc strategy is positive for p > 0 and negative
for p < 0, under economic viable conditions. This can also be explained by the sign of α in
the dimension reduction solution. Because the correction is given by

2αv

(1− p)σ2
(m− r),

and v > 0 and p < 1, the sign of the correction is determined by the sign of α for m >
r (“economically viable”). The sign of α, on the other hand, is the same as p, which
can be seen clearly from (3.6a), when v/σ � 1, as is the case here. In Figure 1, the
numerically computed values of α and γ are given for the optimal allocation (both exact
and approximated) and the ad hoc allocation strategies. We can see from the graphs that the
difference between the optimal and ad hoc strategies is small. The approximation (Merton’s
solution) is reasonably close to the exact value of α. We also present the numerically
computed value functions in Figure 2. Finally, the optimal allocation π∗t at t = 0 is given in
Figure 3. Linear variation with m is apparent in all cases, even for the constrained problem
when the constraints are not active.
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Figure 1 Numerically computed values of α and γ, using (3.6a) and (3.6c). The solid line
corresponds to the optimal allocation and the circles are for the ad hoc allocation. The
dashed line is from the approximation of the optimal allocation (Merton’s solution).

5 Discrete time model

In this section we describe a time-discrete formulation of the asset allocation problem
with learning. This is a more realistic approach in the sense that both market transactions
and learning occur in discrete time intervals (rather than continuously).

5.1 Illustration A: one period. Consider a market consisting of one risky asset St

and a bond Rt. The prices can be written as (with respect to the ‘full’ sigma field Gt ){
dSt = µStdt + σStdZt

dRt = rRtdt
⇒

{
St = S0e

(µ− 1
2
σ2)t+σZt

Rt = R0e
rt

where we take µ to be Gaussian with mean µ0 and standard deviation σ0. With respect to
the sigma field generated by the market up to time t0, Ft0 = σ{Sk, k < t0}, the price of the
stock can then be written

St = St0e
(µ0− 1

2
σ2)(t−t0)+σ(Xt−Xt0 ),

where

Xt = X0 +
σ0

σ
tU + Zt, U ∼ U(0, 1).
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Figure 2 Numerically computed value function V , using (2.24) and (2.25).

We now consider the discrete time one period portfolio allocation problem. Let us assume
t0 = 0 and (t− t0) = 1. The total wealth after investing in the market for one period with
a strategy given by the starting strategy π0 will be

W1 = W0

(
π0

S1

S0
+ (1− π0)

R1

R0

)
.

The goal of the investor is to maximize the expectation of the utility of wealth

V (π0,W0, t0) = E(U(W1)|F0).

If we take a linear utility function, U(x) = x, we can easily calculate the expectation and
solve the maximizing problem explicitly:

V (π0,W0, t0) = E(W1|F0)

= W0E
(
π0e

µ0− 1
2
σ2+σ(X1−X0) + (1− π0)er

)
= W0

(
π0

(
eµ0+ 1

2
σ0

2 − er
)

+ er
)

= W0
1
2π

∫ [
π exp

(
µ0 −

1
2
σ2 − −X2 − 2σ̂2X + σ̂4

2σ̂2
+

σ̂2

2

)
+(1− π) exp(r − X2

2σ̂2
)
]

dX.
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Figure 3 Numerically computed values of optimal allocation π∗t at t = 0. The solid line is
the solution by solving the HJB equation using finite difference method, the dashed line is
the ad hoc strategy, and the circles are the solution using the dimension reduction method.

Here X is a normally distributed random variable with mean zero and standard deviation
σ̂ =

√
σ2 + σ2

0. V is maximized with the allocation strategy

π0 =
{

0 if µ0 + 1
2σ2

0 < r,
1 if µ0 + 1

2σ2
0 > r,

and the investor is indifferent if µ0 + σ2
0/2 = r. In other words, the allocation strategy is

determined by the relation of the uncertainty in the market parameter µ, and not on the
standard deviation σ of the stock. This is to be contrasted to the result for the optimal
allocation problem with deterministic µ, where the optimal strategy π0 is

π0 =
{

0 if µ + 1
2σ2 < r,

1 if µ + 1
2σ2 > r.

5.2 Illustration B: two periods. Now consider investing in the same market for two
investment periods. The investor must make two allocation decisions represented by π0 and
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π1 (at time 0 and 1 respectively). The problem facing the investor can be phrased

max
(π0,π1)

E (U(W2)|F0) , W2 = W1

(
π1

S2

S1
+ (1− π1)

R2

R1

)
.

The expectation can be rewritten

E (E (W2|F1) |F0)

= E
[
E

[
W0

(
π0

S1

S0
+ (1− π0)

R1

R0

) (
π1

S2

S1
+ (1− π1)

R2

R1

) ∣∣∣F1

] ∣∣∣F0

]
= E

[
W0

(
π0

S1

S0
+ (1− π0)

R1

R0

) (
π1E(

S2

S1
|F1) + (1− π1)

R2

R1

) ∣∣∣F0

]
= W0π0E(π1

S1

S0
E(

S2

S1
|F1)|F0) + W0π0

R2

R1
E((1− π1)

S1

S0
|F0)

+ W0(1− π0)
R1

R0
E(π1E(

S2

S1
|F1)|F0) + W0(1− π0)

R2

R0
E((1− π1)|F0).

Writing out S1 and S2 explicitly in the above expression, we see that we only need to
calculate

E(π1
S1

S0
E(

S2

S1
|F1)|F0), (5.1)

E((1− π1)
S1

S0
|F0), (5.2)

E(π1E(
S2

S1
|F1)|F0), (5.3)

E [1− π1|F0] . (5.4)

Note that π1 depends on the market σ field F1 (i.e. π1 = π1(S1)) in an, as yet, undetermined
way. To simplify these expectations as much as possible we note that with respect to Ft0 ,
we have

dXt = agtXtdt + dZt, a =
σ0

σ
, gt =

a

a2t + 1
.

Thus, Xt with respect to Ft0 is an Ornstein-Uhlenbeck process, and

Xt ∼ N (µx(t0, t), σx(t0, t)2) = N
(

e
R t

t0
agsds

Xt0 ,

∫ t

t0

e2
R t

t′ agsdsdt′
)

. (5.5)

We then have

E
[
S2

S1
|F1

]
= eµ0− 1

2
σ2−σX1E

[
eσX2 |F1

]
= eµ0− 1

2
σ2+σµx(1,2)+ 1

2
σ2σx(1,2)2−σX1 .
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The expectations (5.1), (5.2), (5.3), (5.4) then simplify to

E(π1
S1

S0
E(

S2

S1
|F1)|F0) = E(π1|F0)e2(µ0− 1

2
σ2)+σµx(1,2)+ 1

2
σ2σx(1,2)2−σX0 ,

E((1− π1)
S1

S0
|F0) = E((1− π1)eσX1 |F0)eµ0− 1

2
σ2−σX0 ,

E(π1E(
S2

S1
|F1)|F0) = E(π1e

−σX1 |F0)eµ0− 1
2
σ2+σµx(1,2)+ 1

2
σ2σx(1,2)2 ,

E [1− π1|F0] = 1− E [π1|F0] .

In principle one could now attempt to solve the constrained optimization problem by setting
up the Lagrangian and differentiating with respect to {π1}, being careful about switching
the order of expectation and differentiation. That is for each s we would need to set the
derivative of the expected utility of wealth (E.U.W.) to zero. However, we can save a lot
of effort by noting that the E.U.W. depends only linearly on {π1}. This means that, once
again, the optimal solution for each path s = {St, 0 ≤ t ≤ 1} is either zero or one. Writing
the E.U.W. as

E.U.W. = E(A(X1) + B(X1)π1(s)|F0),

we see that the optimal π1 only depends on X1. Since π1 can only depend on information
derived from observables (St), we must build a ‘best inference’ of X1, say X̂1(s), in order
to estimate the sign of B(X1). Then the optimal investment decision for the second period
would be

π∗1 =
{

0 if B(X̂1(s)) > 0,

1 if B(X̂1(s)) <= 0.

5.3 A non-linear utility function. In researching the best possible utility function
that describes investment portfolio strategies, a concave function of the form u(W ) =
−e

1
γ

W0 , γ > 0, was found to capture the required behaviour [8] (p.419).
The solution to the one-step discrete model is already analytically not possible without

making some approximations. The solution process is the following:

max
{π}

E[u(W0)|π] = const

∫
e
−W0

1
γ

πeµ−σ2

2 +σZ

e
−W0

1
γ
(1−π)er

e−
z2

2 dz

≈ −1
γ

e
− 1

γ
(1−π)er

πemu− 1
2
σ2+σ2

2 +
1
γ2

e
− 1

γ
(1−π)er

π2e2µ−σ4

4
+σ2

.

When the above is provided as input in Maple, the solution obtained is of the form

−1
2
γ

(
−er + 2eµ−σ4/4+σ2 −

√
e2r + 4e2µ−σ4/2+2σ2

)
e−µ−r+σ4/4−σ2

.

6 Conclusion

In this report, we investigate the impact of uncertainty in the market parameters to the
optimal allocation problem. An alternative derivation to the one proposed by Brennan is
presented. A dimension reduction solution is obtained by reducing the HJB equation into
a system of simpler ODEs. Numerical results demonstrate the validity of these approaches,
and the impact of the constraints on the allocation strategy is discussed. Discrete-time
allocation models are also presented. To simplify the discussion, we focus on asset allocation
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and do not consider consumption. The methodology that we present in this report can be
extended to include consumption, which will be pursued in a future study.
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George Djoumna (Université Laval), Ahmed ElSheikh (McMaster University), J.F. Williams
(Simon Fraser University), Jonathan Wylie (City University of Hong Kong)

Report prepared by: C. Sean Bohun1 and Chris Breward2.

1 Introduction

This problem was proposed by the Manitoba Institute of Child Health and investigated
at the First Fields-MITACS Industrial Problem-Solving Workshop. The impetus for this
work is to attempt to understand the role that gravity plays in the development of embryos.
One of the most serious obstacles that the group found in this field is the lack of a complete
set of physical parameters for any given embryo. Consequently, it was decided early on that
no time would be spent modelling behaviour for which there was no experimental evidence.

Three processes observed in development of the egg prior to the first cell division were
investigated. These include:

• the up-righting phase (first minute),
• the delay until cortical rotation initiates (up to one hour),
• the cortical rotation (∼ 30 minutes).

The hope was that in understanding these simple processes, one would be able to understand
some of the interesting behaviour of the egg described in Section 1.3 when it is rotated
manually.

1.1 Structure of the egg. Figure 1 illustrates a mature amphibian oocyt (unfertilized
egg) and its internal structure. Contained within the oocyte is a nucleus containing nucleo-
plasm, and suspended in viscous cytoplasm are yolk platelets, ribosomes, and mitochondria.
The yolk platelets store lipoproteins that are packed into a regular array and provide energy
for the developing cell. They vary in size and density with an average diameter of 12 µm [23]
for those platelets located in the vegetal hemisphere.

1sean.bohun@uoit.ca
2breward@maths.ox.ac.uk

c©2006
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Heavy yolk
platelets

Light yolk
platelets,
ribosomes,
mitochondria

Cytoplasm

Vegetal hemisphere

Animal hemisphere

Nucleoplasm

Figure 1 Structure of a mature oocyte.

The periphery of the cell is quite complicated consisting of a series of interconnected
layers. Outermost is a monolayer of follicle cells which are bound to the follicular epithelium
that encases the oocyte. Beneath the follicular epithelium is the vitelline envelope which
is roughly 1− 2 µm in thickness and consists of a network of fibres that range in diameter
from 40−70 nm. Within 200 nm of the surface of the plasma membrane are the cortical and
pigment granules. Stereo micrographs of these structures can be found in [8]. The animal
hemisphere is characterized by many pigment granules and cortical granules of 1.5 µm in
diameter whereas the vegetal hemisphere has significantly less pigment granules and cortical
granules of 2.5 µm in diameter [5]. A detailed view of the cell periphery can be found in [16]
or in [5] and the references cited therein.

1.2 Egg activation. Fertilized eggs are released from the female in random orienta-
tions which persist even though they were activated through fertilization before release. In
urodele amphibians such as the axolotl, many sperm enter the egg, but only one sperm
nucleus fuses with the egg nucleus. When a fertilizing sperm penetrates the plasma mem-
brane, the cortical granules break down and release their contents to the surface of the
egg. Swelling on contact with water, the contents of the granules expand the space that lies
between the plasma membrane and the vitelline envelope forming the perivitelline space [9].
At the same time the vitelline envelope hardens and prevents any further penetration by
sperm. Once the perivitelline space has formed and the animal hemisphere contracts, the
egg is freed of its connections to its surrounding membranes permitting the reorientation
of the eggs via gravity. Average rates of rotation are typically 0.26 rpm [9] and the up-
righting itself is hypothesized to be a result of the different yolk densities. Figure 2 shows
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Figure 2 Typical axolotl eggs and their encapsulating gel after the up-righting phase
(Courtesy of Susan Crawford-Young).

axolotl eggs after up-righting. They appear to be axially symmetric, though inversion
experiments [13, 21, 22] suggest that this may only apply to the cortex (cell membrane
and underlying attached cytoplasm), i.e., developmentally the embryo may be spherically
symmetric at this stage.

Further asymmetry within the egg is introduced by a reorganization of the cytoplasm at
about the halfway point between the moment of fertilization and time of first cell division.
The reorganization occurs with a 30o rotation3 of the cortex relative to the rest of the cell
body [9] and is depicted in Figure 3. The portion of the egg exposed by moving the animal
hemisphere becomes covered with the clear vegetal hemisphere and as a result forms a grey
crescent. This region of the egg becomes the dorsal (back) side of the embryo and the
opposite side of the egg forms the ventral (belly) side of the embryo. The grey crescent is
only visible in certain amphibian eggs but many different techniques have been developed
to visualize the subcortical rotation in many species.

1.3 The role of gravity. Gravity does seem to play a role in the development of the
embryo but its effect is paradoxical. This was demonstrated in a sequence of experiments
where the egg was immobilized and rotated manually. Four situations were examined with
an initially inverted egg.

1. An initial rotation of 15o − 90o for 30 minutes and then manually up-righting the
egg causes the dorsal lip of the embryo to reposition to the side of the egg opposing
gravity but otherwise produces normal offspring [3].

3Vincent [20] indicates rotations of 20o − 38o with an average of 28o. Maximum linear displacement is
300 µm at rates up to 10 µm/minute.
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Before cortical rotation
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Figure 3 Eggs before and after cortical rotation.

2. Eggs irradiated with ultraviolet light typically create offspring with morphological
defects. These defects can be corrected with a manual rotation of the egg for 30
minutes [3].

3. A sustained rotation of 165o (nearly inverted) produces offspring that have an altered
pigmentation. Sterility is enhanced for those eggs with a lower viscosity [21].

4. A sustained inversion at 180o creates eggs that divide normally but fail to produce
offspring [22].

A centrifuge has also been shown to be effective at orientating the cytoplasm, provided
the procedure starts before the initiation of cortical rotation. Conjoined twin tadpoles were
formed by first irradiating the egg with ultraviolet light, centrifuging at 30g for 4 minutes
at a 90o inclination and then centrifuged at 10g for 4 minutes at a 0o inclination. These
offspring were characterized as doubly rescued from the irradiation [1]. Despite the strength
of the acceleration in this latter case the eggs produce viable offspring.

1.4 Overall timeline. Each of the processes discussed above occurs at a specific time
within the first cell cycle. Figure 4 depicts the various events and is an accumulation of data
from several sources [1, 9, 10, 11, 20, 24]. The time units are labelled in both normalized
time (NT) and in minutes. A time of 0 NT corresponds to the moment of fertilization
and 1 NT is the time when the egg divides for the first time. There is some ambiguity in
the literature with respect to the absolute time scale since 1NT can take anywhere from
85 − 120 minutes depending on the temperature [1]. For the remainder of this report we
have assumed the upper bound of 1 NT = 120 minutes.

1.5 Physical data. We end this section with a summary of the geometry and phys-
ical constants that were inferred from the embryological literature. Reported sizes of yolk
platlets range from 2− 14 µm in diameter, Neff et al. [14] identified three categories (small,
medium and large) with densities of 1208, 1240, and 1290 kg/m3 respectively. Wall et
al. [23] specifies two sizes at different concentrations with a preponderance of the platelets
about 12 µm in diameter. Light yolk platelets were found to have a density of 1210 kg/m3

in concentrations of 7 g/ml whereas heavy platelets are more dense and occur in higher
concentrations: 1230 kg/m3 at 40 g/ml. Values used in the remainder of this report as well
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as a characteristic viscosity for the various regions of the egg are listed in Table 1. Most of
the data is taken from the African clawed frog (Xenopus laevis) species.

Figure 5 illustrates the overall geometry of an amphibian egg showing the various regions
of interest. The pigmentation variation seen in the previous images is represented by the
dark and light grey shaded regions.

2 Up-righting phase

As previously described, once the eggs are released from the female and fertilized (or
reverse, for urodele amphibians), the contents of the cortical granules are released into the
gap between the plasma membrane and the vitelline membrane. Upon hydration this gap
expands to form the perivitelline space, freeing the egg and causing it to rotate with the

NT

minutes

microtubules
disassemble

initial
cortical
rotation

final
cortical
rotationaster expansion

fertilization cleavage
contraction
of motion
to animal
hemisphere

microtubules
first appear

cytoplasm
hardens

microtubule array
forms in vegetal
hemisphere

peak cortical
rotation

aligned
microtubules

mitosis begins

cortical
rotation
stops

0 0.3 0.35 0.4 0.45 0.5 0.65 0.7 0.8 0.85 0.9 1

0 36 48 60 84 96 108 120

Figure 4 A timeline of significant events in the oocyte from fertilization to first cleavage.

Table 1 Physical properties of a typical amphibian egg.

Density (kg/m3)
Nucleoplasm ρ0 = 1000
Cytoplasm ρ1 = 1100
Yolk platelets ρ2 = 1200 [14]

Dynamic Viscosity (kg/m/s)
Nucleoplasm µ0 = 5× 10−3 [12]
Cytoplasm µ1 = 20× 10−3 [18]
Water µ2 = 1× 10−3

Lengths (m)
Nucleus diameter 2r0 = 7× 10−4

Egg diameter 2r1 = 2× 10−3 [14]
Yolk platelet diameter a = 12× 10−6 [14]
Nucleus displacement s = 7× 10−4

Cortex width h1 = 20× 10−6 [16]
Perivitelline space h2 = 3× 10−6 [25]
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Figure 5 An idealized amphibian egg and its physical parameters.

dark pigmentation area towards the top. Some of the characteristics of this up-righting
motion are that it takes about a minute to complete [9] and appears to be overdamped [6].

If the interior of the cell is sufficiently viscous then the up-righting can be approximated
with a rigid body rotation. As discussed earlier, two of the main components of the interior
of the egg are yolk platelets and cytoplasm. The platelets are membrane-bound spheres
containing high concentrations of yolk protein so that interior can be thought of as a colloidal
suspension. To determine how long it would take a yolk platelet of diameter a to traverse
the length of the egg we apply Stokes’ law to find the terminal velocity

v∞ =
1
18

(ρ2 − ρ1)ga2

µ1
= 3.92× 10−7 m/s

using the data in Table 1. This implies that it would take 5.1× 103 seconds for the platelet
to fall the 2 mm length of the egg. Since the up-righting occurs on the time scale of a
minute, during this phase the interior of the egg can be approximated as solid.

Referring back to Figure 5, the nucleus is set inside a cell body and has three forces
acting on it. The gravitational force acts through its centre of mass. Buoyancy acts through
the centre of buoyancy which is simply the centre of mass of the displaced fluid. Finally, the
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viscous drag force opposes the motion in the fluid bearing region of the perivitelline space.
Denoting θ as the angular displacement of the nucleus and I0 as the moment of inertia of
the cell,

I0θ̈ = τbuoy + τgravity + τdrag, θ(0) = θ0, θ̇(0) = 0. (2.1)

Using the values in Table 1 we find that

I0 .
2
5
m1r

2
1 =

8
15

πρ1r
5
1 ' 2.8× 10−11, (2.2)

and
τbuoy + τgravity =

4
3
πr3

0(ρ1 − ρ0)gs cos θ ' 3.7× 10−10 cos θ, (2.3)

where I0 neglects the effect of the lower density region occupied by the nucleus. For the
drag we need to take into account the variation in speed over the surface of the sphere. At
an azimuthal angle of ϕ, the infinitesimal torque is

dτdrag = −µ2(r1 sinϕ)θ̇
(

r1 sinϕ

h2

)
dA = −2πr4

1

µ2θ̇

h2
sin3 ϕ dϕ.

Integration over 0 ≤ ϕ ≤ π gives the expression

τdrag = −4
3
πr4

1

µ2θ̇

h2
∼ −1.4× 10−9θ̇. (2.4)

Due to their relative smallness, the inertial terms do not contribute significantly to the
motion. Neglecting them reduces (2.1)-(2.4) to the simplified expression

θ̇ ' sr3
0

r4
1

h2g(ρ1 − ρ0)
µ2

cos θ, θ(0) = θ0, θ̇(0) = 0 (2.5)

with solution curves illustrated in Figure 6. Notice that the time to up-right is typically
less than a minute and the behaviour is essentially exponential. Using reported rotational
speeds of anywhere from 0.026 to 0.54 rpm [9] and the fact that the maximal rate of rotation
occurs when θ = 0 we can determine the size of the perivitelline space as

0.026(2π)
60

r4
1µ2

sr3
0g(ρ1 − ρ0)

≤ h2 ≤
0.54(2π)

60
r4
1µ2

sr3
0g(ρ1 − ρ0)

or 0.092 µm ≤ h2 ≤ 1.9 µm. These values are quite possible since this space is created
by the swelling contents of corticle granules that are themselves typically only 1.5 µm in
diameter.

3 Delay until cortical rotation

Once the egg has up-righted, the yolk platelets in the cytoplasm will settle out until they
reach an equilibrium distribution. To study this behaviour, we approximate the interior of
the egg with a one-dimensional two phase flow model4 (see [7]) for the yolk/cytoplasm
colloid as illustrated in Figure 7. In what follows, α and β are the volume fractions of the
yolk and cytoplasm which move with speeds uα and uβ respectively. Conservation of mass
for each phase can then be written as

αt + (αuα)y = 0, βt + (βuβ)y = 0. (3.1)

4We neglect the presence of the nucleus in this section.



40 Yolk Dynamics in Amphibian Embryos

0 10 20 30 40 50 60
-90

-45

0

45

90

t (s)

θ(
t) 

(d
eg

re
es

)

Figure 6 Solution curves to (2.5) with various initial values −π/2 ≤ θ0 ≤ π/2.
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Figure 7 One-dimensional approximation of the interior of the egg.

Assuming that space is completely filled by yolk and cytoplasm, we write

α + β = 1, (3.2)

which is known as the no-voids condition. Neglecting inertia and introducing pα and pβ for
the averaged isotropic pressure in each phase, µα and µβ for the viscosity of each phase, g
as the acceleration due to gravity, and τα and τβ for the deviatoric stresses, conservation of
momentum for each phase leads us to

(−αpα + ατα)y + (pα − ταi)αy −
µα

a2
αf(α)(uα − uβ) + ραgα = 0, (3.3)

(−βpβ + βτβ)y + (pβ − τβi)βy +
µα

a2
αf(α)(uα − uβ) + ρβgβ = 0, (3.4)

where ταi and τβi are the stresses at the interfaces. The first two terms are the bulk-averaged
and surface-averaged contributions to the stress from the phases themselves, the third term
in these equations represents drag one phase on the other (modelled by f), and the final
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term represents the gravitational force. Continuity of stress at the interface between yolk
and cytoplasm gives

−pα + ταi − (−pβ + τβi) = −γκ, (3.5)
where γ is the average interfacial tension and κ is the average interfacial curvature.

In order to close the model we have to pose four constitutive laws, describing the be-
haviour of the two fluids and what happens with the stress at the interface. Assuming both
phases behave as viscous liquids, we write

τα = µαuαy, τβ = µβuβy, ταi = −µαf1(α)uαy, τβi = −µβf2(β)uβy,

where f1 and f2 are functions associated with the geometry of the system and the ease of
motion of the liquids.

It is straightforward to reduce these ten expressions to three. We nondimensionalise the
resulting equations using

y = Lŷ, u = Uû =
ραga2

µα
û, t =

Lµα

ραga2
t̂, p =

µαUL

a2
p̂, ε =

a

L
,

to yield, dropping hats,

αt + (αu)y = 0, (3.6)

αpy = α

(
1− fu

1− α

)
+ ε2

(
(αuy)y + f1αyuy

)
, (3.7)

py = ρ̄ + (1− ρ̄)α + ε2
(
(αuy)y + f1αyuy − (1− α)(f1uy)y + Γ

)
(3.8)

where ρ̄ = ρβ/ρα, and

Γ = −
µβ

µα

((1− α)
(

αu

1− α

)
y

)
y

− f2αy

(
αu

1− α

)
y

+ (1− α)

(
f2

(
αu

1− α

)
y

)
y

 . (3.9)

To leading order in ε, we find that

αt + (αu)y = 0, u = (1− py)
1− α

f
, py = ρ̄ + (1− ρ̄)α,

in other words,

αt +
(

(1− ρ̄)α(1− α)2

f

)
y

= 0. (3.10)

We suppose that we know the initial distribution of the yolk platelets, so that we write

α(y, 0) = α0(y). (3.11)

At the top and bottom of the egg, we suppose that there is no motion of either phase
(that is, since the fluids are viscous we impose the no slip condition) and so we set u = 0.
This is not possible at both the top and bottom surfaces as seen by the leading-order outer
solution, so the viscous stresses that we have neglected to leading order become important.
Scaling into the boundary layers at the top and bottom of the egg, we find that conservation
of mass leads to the condition

uα = 0
at y = 0 and y = 1. We pick u = 0 throughout the bottom boundary layer (with consequence
that α = 1 at y = 1). In the top boundary layer, we choose α = 0. We now consider the
evolution of three relevant initial conditions (a) a linear yolk gradient, (b) an inverted egg
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(with a linear gradient) and (c) a well-mixed egg. We set f = 1 for simplicity, since we
are unsure of the actual functional form, and we scale t = τ/(1− ρ) to remove the explicit
dependence on ρ. The timescale, T , for the drainage problem is therefore given by

T =
Lµα

(ρα − ρβ)ga2
∼ 700 s, (3.12)

using the values given in Table 1.
Our problem is then to solve

ατ +
(
α(1− α)2

)
y

= 0, y ∈ (0, 1), τ > 0, (3.13)

with an initial condition appropriate to each case and keeping in mind the boundary con-
ditions discussed in the previous paragraph.

3.1 Settling of yolk from a linear gradient. We suppose that

α(y, 0) = y, (3.14)

and we note that the initial linear gradient satisfies the boundary conditions discussed in
the previous section. We solve (3.13) and (3.14) using the method of characteristics, which,
for τ < 1/4, yields

α(y, t) =

 0 0 ≤ y < τ

1
6

[
4− 1

τ +
√(

4− 1
τ

)2 − 12
(
1− y

τ

) ]
, τ < y ≤ 1.

(3.15)

At τ = 1/4 a shock forms and we use the Rankine-Hugoniot condition (see [15]) to find the
position of the shock. Denoting the shock position by y = s(τ), we have

ds

dτ
=

[
α(1− α)2

]
[α]

, (3.16)

where the square brackets denote the jump in the quantity inside the brackets as the shock
is traversed. In this case, since the volume fraction of yolk platelets is zero above the shock,
(3.16) becomes

ds

dτ
= (1− α+)2, (3.17)

where α+ is the solution given in (3.15) and evaluated at y = s, i.e.

α+ =
1
6

4− 1
τ

+

√(
4− 1

τ

)2

− 12
(
1− s

τ

) . (3.18)

The initial condition for the shock position is s = 1/4 at τ = 1/4. We solve (3.17) numer-
ically and show the position of the shock in (y, τ) space in the upper figure of Figure 8.
As τ → ∞, s → 1/2, and the liquid separates into cytoplasm at the top of the egg, and
yolk at the bottom. We show the volume fraction of the yolk platelets as it evolves in the
lower figure of Figure 8. We note that the yolk takes an infinite amount of time to reach
its steady state and that the drainage is fastest at the start. Indeed after 15minutes, the
yolk platelets reside below y = 0.45 (i.e. within 10% of their final position).
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Figure 8 (upper) Characteristic projection in (y, τ) space. The red line shows the position
of the shock. (lower) Graph showing the evolution of the yolk volume fraction. The red
profiles are before the shock develops, the blue ones, afterwards.
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3.2 Settling of an inverted egg. In this case, we set

α(y, 0) = 1− y. (3.19)

We find that a shock immediately develops at the bottom of the egg, across which the yolk
volume fraction jumps to unity. A second shock propagates in from the top of the egg,
initiating at τ = 1/2, across which the volume fraction jumps from zero. Denoting these
two shocks as stop(τ) and sbot(τ) respectively, we find that the solution is

α(y, t) =


0 0 ≤ y ≤ stop(τ)

1
6

[
4− 1

τ +
√(

4− 1
τ

)2 − 12
(
1 + 1

τ −
y
τ

)]
, stop(τ) ≤ y ≤ sbot(τ),

1 sbot(τ) ≤ y ≤ 1.

(3.20)

where the position of the shocks can be found by solving
dstop

dτ
= (1− α(stop, τ))2 , stop(1/4) = 0, (3.21)

and
dsbot

dτ
= −α(sbot, τ) (1− α(sbot, τ))2

1− α(sbot, τ)
sbot(0) = 0. (3.22)

These two shocks collide at y = 1/2, τ = 2.6 and the solution becomes

α(y, t) =
{

0, 0 ≤ y < 1/2
1, 1/2 ≤ y ≤ 1,

(3.23)

for subsequent times, since the new shock created when these two collide satisfies dsend/dτ =
0. We show the characteristic projections and the evolution of the yolk volume fraction in
Figure 9. We note that, in this case, the yolk reaches its steady state after a finite time,
which is equivalent to 30 minutes.

3.3 Settling of a well-mixed egg. The final case we consider is the settling of an
egg where the yolk is well mixed, so that the initial condition is

α(y, 0) = 1/2. (3.24)

In this case, the solution is α = 1/2 along parallel lines τ = 4(y0 − y). However, the
initial data cannot propagate into the triangle 1 − τ/4 ≤ y ≤ 1, and we introduce an
expansion fan there (with α ranging from 1/2 to 1). Some of the characteristics in the fan
intersect with those generated from the initial data so, as in the previous case, we have a
shock propagating in from the base of the egg. The solution reads

α(y, t) =


0 0 ≤ y ≤ stop(τ)

1/2 stop(τ) ≤ y ≤ sbot(τ)
2+

q
1− 1−y

τ

3 , sbot(τ) ≤ y ≤ 1.

(3.25)

In this situation, it’s easy to find stop = τ/4, and that sbot satisfies

dsbot

dt
=

α∗(1− α∗)2 − 1
8

α∗ − 1
2

, sbot(0) = 1, (3.26)

where

α∗ =
2 +

√
1− 1−s(τ)

τ

3
. (3.27)
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Figure 9 (upper) Characteristic projection in (y, τ) space. The red line shows the position
of stop, the green line shows the position of sbot and the blue line shows the position of
send. (lower) Graph showing the evolution of the yolk volume fraction. The red profiles
are before the shock stop develops, the blue ones, afterwards. The final state is shown in

black.
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This solution holds until the two shocks collide, which occurs at τ∗, found by solving
stop(τ∗) = sbot(τ∗), and yielding τ = 1.788, y = 0.444 and subsequently a final (slowly
moving) shock propagates back down the egg allowing a relaxation to the steady state. The
final shock initiates from sbot(τ∗), and moves according to

dsend

dt
= (1− α∗)2, send(τ∗) = sbot(τ∗). (3.28)

We show the characteristic projection and the evolution of the yolk volume fraction in
Figure 10, in which we can see that the yolk takes an infinite time to settle to the steady
state. However, after 22 minutes, the yolk platelets are all below y = 0.45.

4 Cortical rotation

We now turn our attention to the rotation of the cortex that takes place typically around
t = 0.5 in normalized time units or at about 60 minutes. Some recent developments [2, 10,
11, 24] have begun to identify components involved in the cortical rotation but there is still
a poor understanding of the details of the actual mechanism. What is known with some
certainty is that the motor molecules dynein and kinesin both play a role in the process. In
addition, recent measurements [4] have determined that one motor molecule is capable of
producing about 6.2× 10−12 N of force.

Even though the electrokinetics of microtubules is still in its infancy [19], it is possible to
determine the number of motor molecules that would be required to perform the cortical ro-
tation. We know that the rotation rate is typically θ̇ = 30o in 30minutes = π/180/60 rad/s.
As a result the linear speed at the surface of the egg (r1 = 1 × 10−3 m) is v1 = r1θ̇ or
v1 = 2.9× 10−7 m/s.

The drag force on the cortex is to a first approximation simply the surface area of the
cortex multiplied by the viscous drag per unit area. Using the data in Table 1,

Fdrag = 4πr2
1µ1

∂v

∂r

∣∣∣∣
r=r1

= 4πr2
1µ1

v1

h1
= 3.6× 10−9 N

indicating that about 590 of the roughly 104 available motor molecules would be required
to achieve the observed rotation rate. Irrespective of the actual mechanism chosen there
seems to be enough energy available to allow the rotation to occur.

There are two main difficulties that need to be overcome before any further modelling
can commence. First, the generation of microtubules inside the egg and the motion of
motor molecules along these microtubles could be modelled but as mentioned earlier, it is
not clear in the literature as to the actual mechanism. The second problem to overcome is
an understanding of the switching on and off for the cortical rotation. It seems that this is
biological in nature and there does not seem to be an appropriate model for this process.
It is possible that cortical rotation is merely stopped by cell division. Artificially induced
rotation in sea urchin eggs continues indefinitely [17].

5 Conclusions and future work

In our analysis of the yolk dynamics of the egg prior to the first cell division, three sub-
problems were investigated. The up-righting phase was modelled with a simple buoyancy
argument for a low density nucleus trapped inside a viscous cytoplasm and predicts an
up-righting behaviour consistent with observations.
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Figure 10 (upper) Characteristic projection in (y, τ) space. The red line shows the
position of stop, the green line shows the position of sbot and the blue line shows the
position of send. (lower) Graph showing the evolution of the yolk volume fraction. The
red profiles are before the shock send develops, the blue ones, afterwards. The final state
is shown in black.
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Once the egg has up-righted, the yolk platelets in the cytoplasm will settle out until they
reach an equilibrium distribution. We described the settling of yolk platelets through the
cytoplasm using a two phase model. We reduced the model to the simplest form possible
and solved the resulting model analytically in three cases: a linear initial gradient of yolk
platelets, an inverted egg, and a well mixed egg. We found that the inverted egg settled
in finite time, while the other cases settled in infinite time (with the evolution being 90%
complete within 15 minutes and 22 minutes respectively). In all three cases, a region devoid
of yolk platelets formed near the top of the egg, and we were able to track the point at
which the volume fraction became non-zero.

In the case where one inverts the egg, the yolk platelets are stationary after 30minutes,
in contrast with the upright egg case, where there is always motion of the fluid in the
egg, albeit slow. This might suggest that yolk motion is needed for correct development of
embryos. However, further speculation about links between the yolk platelet evolution and
the development of the embryo will require further experimentation.

With respect to cortical rotation, we verified that motor molecules with the egg will
have sufficient energy to cause the cortical rotation. However, a clear mechanism for how
the rotation takes place has not been identified.

Future work along these lines could involve further development of the two-phase model
to allow the inclusion of the nucleus and/or utilization of the correct egg geometry. An
important step in the verification and refinement of the models used in this preliminary work
is the direct observation of yolk platelets during the critical moments between fertilization
and the first cell division.
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1 Introduction

Severe Acute Respiratory Syndrome (SARS) first appeared in November 2002 in the
Guangdong province of China. First reported in Asia in February 2003, the illness spread
to more than two dozen countries in Asia, North America, South America and Europe
within months. By the time the disease had been declared ‘eradicated’ in May 2005 by the
World Health Organization (WHO), a total of 8098 people in 28 countries world wide had
been infected, and of those, 774 had died.

The advance of commercial air traffic plays an ever increasing role in the spread of
infectious diseases and in the potential for these diseases to reach pandemic proportions.
Despite the significance of commercial air traffic and its role in the worldwide dissemination
of infectious diseases, our understanding of global air traffic dynamics remains limited. It
is the goal of this paper to give insight into the nature of air traffic as it pertains to the
spread of diseases.

The models developed are specifically related to the SARS disease. They can be further
generalized to fit other similar (in terms of transmission) diseases, but modifications are
necessary in order to take into account diseases with latency periods that are short relative
to the flight time.
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Questions. The problem presenter posed the following questions:
Q1. Is it possible to develop a mathematical model to forecast the movement of disease

from a given point source location?
Q2. Can these models be developed such that their predictions agree with the SARS data

provided?
Q3. Was the movement of SARS random in nature or did the cases travel in a systematic

fashion?
Q4. Were these movements predictable?

2 The data

The data that was provided by Khan was abundant. It allowed us to get a good idea
of three important aspects:

1. infrastructure,
2. connections,
3. disease.
Infrastructure. The data details the busiest 802 airports worldwide. Due to a data

sharing agreement, each airport had been assigned a random number, while their names
had been deleted from the database. Below, we refer to these airports as Ai, i = 1, . . . , 802.
Only Hong Kong International airport was identified, which was the point of origin of SARS
once it left mainland China. In the random ordering chosen for the airports, Hong Kong
International has number 7. The total number per year of inbound and outbound passengers
for each airport is included in the database. Also, information is provided that localizes
these airports within 12 major geographical zones.

Connections. We are given a 802 × 802 table, detailing, for any pair i, j = 1, . . . , 802,
the number of seats on flights between airports Ai and Aj . This is different from the actual
number of passengers between Ai and Aj , but the latter information is sensitive commercial
data and is not available. Also provided in the table is the distance between Ai and Aj ,
computed by taking the distance between them on a sphere.

Disease importation. For each of the airports, the number of imported cases into that
airport is provided. A case is defined as imported in the airport if, following a careful
epidemiological enquiry, it is identified as having arrived into the airport while either in the
latent or the active stage of the disease. A case identified in the city that the airport serves,
and for which the transmission was clearly local, is not counted. Not available is the time
course of the cases: we are given the total number of imported cases over the course of the
SARS epidemic, with no finer temporal detail.

3 Dynamics in the airports

3.1 Choice of modelling paradigm. We elaborate two different models. One uses
ordinary differential equations both for the population and the movement. The other uses
ordinary differential equations at the population level, and a stochastic process for movement
of individuals between locations.

Because of the nature of the data, and in particular, the absence of geographical infor-
mation about the airports (and in particular, about the urban centers they are close to),
we choose to consider airports as the units of analysis. Two airports are then considered
as directly connected one to another if the number of seats between them is nonzero in the
database.



Global Travel and Severe Acute Respiratory Syndrome (SARS) 53

3.2 The model within each airport. From now on, we denote by n the total number
of airports. (Here, n = 802). The model in each airport i = 1, . . . , n is based on the
classical SEIR model, which has individuals in one of the epidemiological states: susceptible,
exposed, infectious and recovered, with numbers at time t denoted Si(t), Ei(t), Ii(t) and
Ri(t), respectively.

The following are remarks concerning these epidemiological states, in the present con-
text. This discussion will allow us to greatly simplify the model.

Susceptibles represent almost all the population. They are potentially affected by the
disease, if subject to an infecting contact.

Exposed (or latent) individuals are susceptibles who have become carriers of the disease.
In the case of SARS, estimates of the incubation period (the length of time between infection
and the onset of symptoms) vary between 2-10 and 7-10 days, meaning that in any case, the
inclusion of a class of exposed individuals is necessary in our model. It is generally assumed
that patients in this stage of infection do not transmit the disease.

Infectious individuals actively spread the infection, through contacts with susceptible
individuals. Several functions are used to model this transmission, but in the case of large
populations such as those traveling through airports, it is generally assumed that incidence,
the rate of apparition of new cases, takes the form

βi
SiIi

Ni

in airport Ai, where Ni = Si + Ei + Ii + Ri is the population in the airport and βi is the
disease transmission coefficient in airport i. This type of incidence is called mass action
incidence. The disease transmission coefficient βi represents the probability that infection
occurs, given contact. We allow it to vary from location to location, because factors such
as hygiene or social distance play a role in the transmission of the disease.

Recovered individuals are individuals who, having recovered from infection, are immune
to reinfection (permanently in the case of an SEIR model, temporarily in the case of an
SEIRS model).

Simplifications. Because we are interested in the course of the epidemic over a short
time interval of about one year, and that our focus is on the appearance of new cases in
new airports rather than the global course of the epidemic, we make a certain number of
simplifying assumptions.

First, we suppose that the total population in each airport is large and roughly constant,
and that Ni ≈ Si, that is, the total number Ei + Ii + Ri is negligible compared to Ni (or
Si). This implies that proportional incidence takes the form

βiIi.

Note that this implies that the incidence function, which is typically the only nonlinearity
in basic epidemiological models, is linear here; this may not be true for other diseases. It
is also not true if the disease is considered on a longer time period, because in this case,
Ei + Ii + Ri might increase to such a point that Si is no longer approximately equal to Ni.
Finally, we interpret the class of recovered individuals as in the first meaning it was given
[4], in terms of removed individuals. Individuals are removed from the I class either by
recovery or by death. Individuals in the R class play no role in the short term transmission
of the disease, and thus we neglect this class from now on.

These assumptions imply that the only epidemiological states of interest in our model
are the E and I classes. Independent of transport between locations, the equations in a
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given airport i are

d

dt
Ei(t) = βiIi(t)− αEi(t),

d

dt
Ii(t) = αEi(t)− γiIi(t),

where 1/α is the mean duration of the latent period, and 1/γi is the mean duration of
infection before removal by either death or recovery. (Implicit in this formulation is the
assumption that the duration of the latent stage and the infectious stage are both expo-
nentially distributed random variables.) The parameter α is the same in all airports, as
it represents a pre-diagnosis disease-specific aspect, and is thus independent of location.
On the other hand, the parameter γi is influenced by treatment, and thus depends on the
location.

Accounting for travel. The model we have described thus far accounts for disease trans-
mission in each location, but does not implement movement between locations. To do this,
we consider each airport as a vertex in an undirected graph, and set an edge in the graph
between airports Ai and Aj if the database shows a nonzero number of seats between air-
ports Ai and Aj . In airport i and for individuals in epidemiological state X (where X is E
or I), we then use an operator

TX
i (t,X(t))

to describe the travel of individuals, where X = (X1, . . . , Xn)T is the vector of individuals in
state X. These operators depend on the type of modelling paradigm used, and are detailed
later.

Model equations. In each of the i = 1, . . . , n airports, we use the following equations:

d

dt
Ei(t) = βiIi(t)− αiEi(t) + TE

i (t,E(t)) (3.1a)

d

dt
Ii(t) = αiEi(t)− γiIi(t) + TI

i (t, I(t)). (3.1b)

4 Deterministic modelling of transport

4.1 The transport operator. In the deterministic model, it is assumed that move-
ment between airports occurs continuously, with the rate of transport of individuals for
airport i to airport j equal to pX

jiXi, for individuals in epidemiological state X = {E, I}.
Individuals inbound to airport i arrive at the rate

n∑
j=1

pX
ij Xj ,

where it is assumed for simplicity of notations that pii = 0 for all i. Thus,

TX
i (t,X(t)) =

n∑
j=1

pX
ij Xj − pX

jiXi. (4.1)

Note that in this case, the transport operator is autonomous. Also, we assume (and this
is satisfied by the data provided) that the transport graph is strongly connected, i.e., that
any airport can be reached from any other airport in a finite number of steps (flights).
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4.2 Model equations. The model equations are thus given, for i = 1, . . . , n, by

d

dt
Ei(t) = βiIi(t)− αiEi(t) +

n∑
j=1

pE
ijEj − pE

jiEi, (4.2a)

d

dt
Ii(t) = αiEi(t)− γiIi(t) +

n∑
j=1

pI
ijIj − pI

jiIi. (4.2b)

Non-dimensionalizing time so that t = t̃/α leads to

d

dt
Ei(t) =

β

α
Ii(t)−

1 +
n∑

j=1

pE
ji

α

Ei(t) +
n∑

j=1

pE
ij

α
Ej(t), (4.3a)

d

dt
Ii(t) = Ei(t)−

γ

α
+

n∑
j=1

pI
ji

α

 Ii(t) +
n∑

j=1

pI
ij

α
Ij(t). (4.3b)

Depending on the purpose, we use one of these systems: (4.2) is easier to interpret, making
the mathematical analysis easier, while (4.3) is more robust numerically.

4.3 Mathematical analysis. The model (4.2) is a particular case of the models of
[1, 2, 3]. Therefore, we do not go into details of the analysis, referring to these papers for
precisions.

Grouping disease dependent terms and transportation-dependent terms and writing
Ĩ = [I1 I2 . . . In E1 E2 . . . En]T , we can write the above system of 2n equations in matrix
notation as

d

dt
Ĩ = (D + C) Ĩ , (4.4)

where the disease dependent matrix D is given by

D =


−γ

α
In In

β

α
In −In

 , (4.5)

and the connectivity matrix C is given by

C =
[

P I
n On

On PE
n

]
, (4.6)

where In denotes the n × n identity matrix, and On denotes the n × n zero matrix. The
matrix P I

n is the n× n matrix given by

P I
n =

1
α



−
∑
j

pI
j1 pI

12 · · · pI
1n

pI
21 −

∑
j

pI
j2 · · ·

...

...
...

. . .
...

pI
n1 · · · · · · −

∑
j

pI
jn


. (4.7)

The matrix PE
n is similar to P I

n with the superscript I replaced with E.
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The first result concerns the asymptotic behavior of the movement problem. A matrix
such as (4.7) is singular. However, the analysis can be conducted as explained in [3], by
considering the augmented matrix incorporating the total population. This allows us to
state the following:

Theorem 4.1 Assume that there are initially individuals in the system, and that each
of the travel matrices is irreducible. Then

lim
t→∞

N(t) = N∗ � 0.

Note that it was assumed earlier that the connection graph is strongly connected. The
assumption of irreducibility of PE

n and P I
n simply translates this fact in matrix terms.

The next step in the analysis is to establish the existence of disease free equilibria (DFE),
that is, of equilibria for which Ei = Ii = 0 for all i = 1, . . . , n. Clearly, setting Ei = Ii = 0
for i = 1, . . . , n in (4.2) implies that Ei = Ii = 0 remain zero. Thus the DFE of (4.2) is
unique and equal to N∗.

Finally, we conclude this brief analysis with considerations on the basic reproduction
number, R0. The basic reproduction number represents the average number of secondary
cases generated in a wholly susceptible population by the introduction of one infective
individual. This is a measure of the ability of the disease to spread.

To compute R0, we proceed as in [3], using the method of [5]. We consider only the
infected classes E and I, and form the matrices F and V representing new infections and
other movements within the infected classes, respectively. Then F takes the form

F =
(

0 F12

0 0

)
,

with
F12 = diag (β1, . . . , βn).

The matrix V is the block matrix

V =
(

V11 0
−V21 V22

)
,

with

V11 = −PE
n + diag

αi +
n∑

j=1

pE
ji

 , V21 = diag (αi),

and

V22 = −P I
n + diag

γi +
n∑

j=1

pI
ji

 .

It can be established as in [3] that V11 and V22 are n×n irreducible M-matrices, giving the
next generation matrix

FV −1 =
(

F12V
−1
22 V21V

−1
11 F12V

−1
22

0 0

)
,

and the following result holds.

Theorem 4.2 ([3]) Let R0 = ρ(FV −1) = ρ(F12V
−1
22 V21V

−1
11 ), with ρ(·) the spectral

radius. If R0 < 1, then the DFE is globally asymptotically stable, whereas if R0 > 1, the
DFE is globally asymptotically unstable.
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4.4 Numerical simulations. For the disease related parameters, we use the following
values:

• transmission coefficient β = 0.5,
• mean incubation period 1/α = 7 days,
• mean sojourn time in the infectious stage 1/γ = 21 days.

The latter two values are obtained from the literature on SARS. Estimating β is probably
one of the hardest tasks in epidemiological modeling, and the value we use is deduced from
running the simulation several times and observing realistic spread times. In the case of
system (4.2), the pij represent the strength of the connection between airports i and j. To
estimate values, we use the following formula:

pij =
Number of seats between i and j

Total number of seats (between all airports)
(4.8)

=
Nij

802∑
i,j

Nij

. (4.9)

For example, consider the link from airport 7 to airport 9. The number of available seats
is 4,364,182. The total number of seats between all airports is 920,641,841. Therefore,
p7,9 = 0.0047404.
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Figure 1 Time of onset of cases in airports for an epidemic initiated in airport 7 (Hong
Kong), where the numbers above the curve represent the airports that report their first
case at the corresponding time.



58 Global Travel and Severe Acute Respiratory Syndrome (SARS)

Here, we assume that travelers restrain from going to airports where there are known
cases. Inbound flows, in airport i, takes the form

802∑
k=1

pE
ike
−cIiEk

for exposed, and
802∑
k=1

pI
ike
−cIiIk

for infectious. Figure 1 then shows the time of activation of some airports, following an
epidemic initiated in airport 7 (Hong Kong). In this figure, we assume that an airport
becomes active once the number of cases in that airport becomes larger than 1. For example,
we see that after about 10 days, airport 9 becomes active, followed by airports 8, 5, 6 and
37 (the latter two becoming active at the same time).

Comparing the results shown on Figure 1 with the data, we see that over 70% of the
airports that become active within the first 30 days of simulation had SARS cases in the
data. We also observe that the agreement between simulations and data is better during
the initial phase of the simulation (the first 20 days) than later. Indeed, most of the
airports becoming active in the simulation, during the first phase, had SARS cases. This
proportion then decreases, and most of the airports becoming active in the simulations
during the second phase did not have SARS cases in the data. This is easy to understand:
the model assumes instantaneous travel between sites. Therefore, a very small time after
the simulation is initiated, there are infectives in all patches (since the connection graph is
strongly connected), albeit in very small numbers. The initial spread is then governed by
the strength of the connections, while the process homogenizes for larger times, with the
number of infectives becoming larger (and larger than 1) in most patches.

5 Stochastic modelling of transport

Consider that the travel of individuals is described by the operator

TX
i (t,X(t)) = ∆T (t)× a dispersion kernel,

where ∆T (t) =
∑∞

k=0 δ(t− kT ) is a Dirac comb for the Dirac delta function δ, and T is the
period of the movements, e.g., T = 1 day if the movement phase is assumed to take place
every day. The dispersion kernel then takes the exposed and infective individuals to other
patches. An example is the kernel resulting from drawing, at random, a destination among
the airports to which an airport has access, with uniform probability density weighted by
the volume of the route relative to all routes out of that airport, i.e., with probabilities pij

given as in (4.8).
Preliminary results (not presented here) that were obtained with this model are also

quite promising, although they are of course more prone to variability, and thus a larger
number of simulations is required in order to deduce some general trends. This will be an
area of future study.
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6 Conclusions

Due to the limited time imparted to this exercise, it is of course difficult to produce
detailed results. However, we are able to draw some positive conclusions. The models
developed give remarkably good indications on the future spread of the disease, when it
is initiated in the same point of origin as SARS. Thus, even though our approach was
extremely simplified, it seems that we can answer questions Q1 and Q2 of the introduction
by the affirmative. To answer Q3 is harder: even the deterministic model uses an average
approach, because the rates of movement from one airport to another describe the movement
of “average individuals”. Further investigations of the stochastic model would probably
allow for a more definitive answer to this question. Finally, to answer Q4 is also difficult;
to do so would require the ability to more precisely compare the predictions of our models
with the time course of the epidemic, which was not available in our data.
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Roger Chau (University of Waterloo), Redhouane Henda (Laurentian University), Andrew
King (McGill University), Greg Lewis (UOIT), Neal Madras (York University), Mary Pugh
(University of Toronto), Louis Rossi (University of Delaware), Thomas Witelski (Duke
University)

Report prepared by: Luciano Buono, Roger Chau, Greg Lewis1, Neal Madras, Mary
Pugh, Louis Rossi, Thomas Witelski

1 Introduction

Attachment theory is a branch of psychology in which the bond between one person
with another is studied. Of particular importance is the attachment of a child with her
mother.2 The form of this attachment will not only affect the ability of the mother to
regulate the anxiety of the child, but, also, it has been postulated that the child uses her
mother as a secure base from which she can explore her world [1, 2, 9]. Furthermore, the
attachment that a child forms with her mother during the first year of her life will not only
affect a child’s relationship with her mother, but will affect the attachments she forms with
others for the rest of her life.

As part of a larger observational study, Ainsworth developed the “strange situation”
laboratory experiment to probe the attachment of a child with her mother [1]. In the exper-
iment, a toddler’s response to her mother and the environment is observed during a series
of high and low anxiety situations. Of particular interest, is how the child interacts with
her mother to help regulate her anxiety, and the quality of the child’s play and exploration
of her new environment.

The strange situation takes place over a period of twenty minutes, and consists of a
series of eight episodes: (1) the mother and child enter a laboratory playroom that contains

1greg.lewis@uoit.ca
2Although, for consistency, we will refer to the child as a female, the theory does not distinguish the

sex of the child, and the experiments described in this report involved children of both sexes. Thus, the
discussion throughout this report is meant to hold equally regardless of the sex of the child.
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toys, (2) a stranger enters the room, and attempts to engage the child, (3) the mother
leaves the room for approximately 3 minutes, during which time the stranger attempts
to comfort/engage the child if the child appears distressed, (4) the mother re-enters and
attempts to comfort the child, (5) the child and mother stay for a time in the room, while
the child is once again free to play, (6) after a time, the mother and the stranger leave the
room, (7) while the mother is still not present the stranger re-enters the room and attempts
to comfort the child, (8) the mother re-enters the room and attempts to comfort the child.

Based on the observations of the experiment, the children are placed into three cate-
gorizes of attachment, (1) secure, (2) avoidant, or (3) ambivalent. The avoidant and am-
bivalent categories correspond to insecure attachment. Upon first entering the laboratory
playroom, a child exhibiting secure attachment will be willing to explore the room, coming
back to her mother or glancing at her mother periodically. When the mother returns after
her short absence, such a child will seek out her mother, and will subsequently calm down
rapidly. Once calm, the child will quickly return to play and exploration of the room. A
child exhibiting avoidant attachment will tend not to seek contact with her mother during
the first phase when she first enters the room with her mother. However, the quality of play
and exploration is not as high as that of the secure child. During her mother’s absence, the
avoidant child may not show any outward signs of distress, and when the mother re-enters
the room, she may not show signs that she has noticed her return. Indeed she may avoid
eye contact with her mother. However, the avoidant child will still seek out her mother
if she feels a heightened sense of anxiety for a prolonged period of time. Upon initially
entering the room, an ambivalent child will tend to hover close to her mother, and will only
be willing to explore the new environment very tentatively. Although such a child will seek
out the mother upon her return after the short absence, she will not immediately derive
comfort from her mother, and may even show outward signs of hostility, such as hitting her
mother, or pushing her mother away.

The heart of attachment theory is that the category of attachment in which a child falls
is correlated with the history of the mother’s response to the child’s requests for comfort
during times of increased anxiety. As the main part of her study, Ainsworth made home-
based observations, noting the quality of a mother’s interaction with her child. She found
that if a mother consistently responded to her child’s call for attention with sensitivity, the
child tended to develop a secure attachment. If a mother consistently tended to ignore the
child’s calls for comfort, the child tended to develop an avoidant attachment. If a mother
sometimes responded to her child with sensitivity, and sometimes did not, the child tended
to develop an ambivalent attachment.

The presenters of this problem requested the academic participants to develop mathe-
matical models of the decision-making and behaviour that occur when a child is subjected
to a stressful episode, e.g. as in the strange situation. The overall goal was to determine
the factors that are most relevant in determining the type of attachment the child exhibits
toward her mother, and to determine whether these factors are associated with the sen-
sitivity and consistency with which the mother generally responds to the child’s requests
for comfort and attention. Such a model would shed light on the mechanism by which the
mother’s behaviour influences the character of her child’s attachment to her, and it would
provide evidence in support of attachment theory itself.

This report is structured as follows. In Section 2, we use game theory to probe the
mother and child’s decision making process in the hopes that we can classify the three
distinct mother-child behaviours. In Section 3, we develop a dynamical system that models
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the relevant features that determine the child’s response to situations of varying levels of
stress, e.g. as experienced in the “strange situation.” The goal is to reproduce the distinct
dynamics associated with the three different attachment categories as parameters related
to the mother’s sensitivity and consistency are varied. Finally, in Section 4, we give a brief
introduction to the application of control theory to this problem.

2 Game theory

In this section, we apply game theory to the decision making process of the child and
mother. The analysis of payoffs and strategies associated with game theory and the later
theory of moves has been used for decades in many fields such as economics, diplomacy, reli-
gion, politics and biology (see [3, 6, 15, 16, 18] for overviews and discussion). There are two
key ideas that arise from such analyses. The first is that of an equilibrium strategy where
both players (in this case for a two-player game) have no incentive to change their strategy
and receive a different payoff. The second idea is that of moving or changing strategies. Of
the two, the second requires additional assumptions about the rationality, motivations and
desires within each player, and some of these can be contested. Needless to say, we will
focus on the former and dodge the latter. We will use game theoretic approaches to try and
understand how behaviours like “secure”, “ambivalent”, and “avoidant” emerge as equilib-
rium choices for the child, given her upbringing. We focus on the situation immediately
after the mother has returned to the room. At this moment, the child must decide whether
or not to approach her mother to seek comfort. At the same time, the mother must decide
whether or not to attend to the child.

2.1 A one-person game. First, we describe the simplest possible game. Here, the
child has to choose what to do (what “strategy” to use) given the situation she’s been
presented with. This corresponds to the clinical observation that the mother’s behaviour
is independent of the child’s. To start, we define the game. This requires modelling the
situation, modelling the child’s strategies, and constructing a payoff matrix for the child.
Strictly speaking, this scenario is an optimization problem for the child rather than a game
theoretic problem because only the child is playing; however, we shall use the game-theoretic
language throughout this section.

When her mother re-enters the room, the child is anxious because she’d been left alone
with a stranger for two minutes. The mother has two possible strategies: to attend to her
child or to ignore her. The mother executes these strategies with probability ~q = (q, 1− q)
where 0 ≤ q ≤ 1. If ~q = (1, 0) then the mother is the Perfect Mother: unfailingly attentive.
If ~q = (0, 1) then the mother is made of stone. Real mothers would have 0 < q < 1. Whether
or not the mother attends in a particular instantiation of the game would be determined
by the flip of a q-weighted coin.

In a one-person game, the player (the child) knows what her opponent (the mother)
will do and needs to choose a response. Given this information, the child has to choose a
strategy (choose an action). For each possible strategy the payoff is the amount of comfort
she would receive — the amount that her anxiety would be reduced — should she choose
that strategy. In using a one-person game as a model, we are bearing in mind that the
mother and child come to the experiment with a long history of prior stressful situations.
The child already has a measure of her mother — she knows her mother’s ~q.

2.1.1 A child with two choices. We first consider a model in which the child has only
two choices: to go to her mother seeking comfort or to not to go. The child’s payoff matrix
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Mother’s action
Attend Ignore

q 1− q
Child’s Go 1 −s
action Don’t Go 0 0

Table 1 The child’s payoff matrix for the one-person game in which she has two choices.

is given in Table 1. We have normalized the payoffs by the amount of comfort or stress
reduction the child receives when she seeks comfort and her mother attends to her. Thus, it
is possible for the value in the upper left to be -1 in the pathological case where the mother
comforting the child raises the child’s stress level. When the child seeks comfort but her
mother ignores her, the payoff is −s. If the child is stressed by such rejection, then s > 0.
If she would be comforted by being close to her mother, even if she is being ignored, then
s < 0. We do assume that s > −1: being ignored by her mother provides less comfort than
if her mother attends to her. Finally, if the child does not go to her mother for comfort
then she receives no comfort, whether or not her mother attends to her.

The model has two parameters: q and s. These reflect the parenting strategy and the
quality of the mother-child interaction, respectively.

Since the model is a one-person game, the optimal strategy will be a pure strategy: the
child will always go to her mother or will never go to her mother. This is to be contrasted
with a “mixed” strategy in which the child would go to her mother with probability p where
0 < p < 1.

If s ≤ 0 then “Go” is a dominant strategy: no matter what the mother does, the child
is better off seeking comfort than not. If s > 0 then there is no dominant strategy. What
the child chooses to do will depend on the values of q and s.

Assume s > 0. The child’s expected payoffs are

PGo = q − (1− q)s,
PDon’t Go = 0.

This means that if the child always plays “Go” then after many plays of the game, the
average payoff per game will be approximately PGo and the more times the game has been
played, the closer the average payoff will be to PGo. We see PGo > PDon’t Go if and only if
s < q/(1− q) =: scrit.

At first sight, it seems odd to imagine that the child plays this game many times (which is
required in order to use PGo and PDon’t Go to analyze the child’s options.) Indeed, if one only
counts the number of times that the child goes through the “Strange Situation” protocol
then it would be unusual. We suggest, however, that the mother and child played this game
many times before they reached the laboratory situation — every time the child cried out
for food, a fresh diaper, reassurance, or entertainment. The “Strange Situation” protocol is
designed to try and extract the essence of these interactions, rather than being a completely
novel situation. And so we view it as yet another play of a game played many times before.
Secondly, it may seem odd to imagine that a child is capable of statistical thinking. It is
our understanding that children as young as six months old have demonstrated statistical
inference in early language acquisition.

If the child seeks comfort but is ignored this causes her stress s. If this stress is less
than scrit then she is better off seeking comfort and risking stress than not — her strategy
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is always “Go”. If s > scrit then her optimal strategy is always “Don’t Go”. If s = scrit then
it doesn’t matter what she does; on average she will have zero stress reduction whether she
chooses “Go” or “Don’t Go”.

It remains to understand how the parenting strategy, q, determines scrit. If the mother
is unfailingly attentive (q = 1) then the child should always seek comfort because PGo >
PDon’t Go no matter what the value of s. If the mother is never attentive (q = 0) then the
child should never seek comfort because PGo < PDon’t Go (recall that we’ve assumed s > 0).
If the mother is generally quite attentive then q is close to 1 and scrit is large. This means
that the child can have a relatively large stress response to rejection (s) but still be better
off always seeking comfort because the chances of rejection are relatively low. Similarly, if
the mother is generally inattentive then q is close to 0 and scrit is small. This means that
only the thick-skinned child would be better off choosing “Go” — only a child with a low
stress response to rejection can afford the risk.

If q and s are such that s > scrit then we would say the child is “avoidant” and observe
that there is no stress mediation because the child’s expected payoff is 0. If s < scrit then
the child is either “secure” or “ambivalent”. In both of these behaviours, the child goes to
her mother for stress reduction.

We finish our discussion by noting that in practise one would not expect the child’s stress
response, s, to be independent of the mother’s parenting strategy q. This, in turn, makes it
hard to predict what the child’s behaviour will be. If the mother is reliably attentive then
scrit would be large and one might expect the child to be secure. But one might also expect
the child of such a reliably attentive mother to be truly stressed out should her mother not
attend to her: her s could be quite large and might exceed scrit. Similarly, if the mother is
not at all reliable in her attentiveness then scrit would be close to zero. But one might also
expect the child of such a mother to have become quite thick-skinned: her s could be quite
small. We also note that the child’s stress response will also have a biological component,
one that is not caused by her upbringing. Different people have different pain thresholds and
sensitivities; this would certainly enter into the child’s value of s. This biological component
would provide a lower bound on the child’s s value. As a result, it provides a threshold for
how unreliable the child’s mother could be: if q becomes too close to zero then scrit will
be less than the biological component of the child’s stress response and the child will be
avoidant no matter what.

2.1.2 A child with three choices. We now consider what might happen if the child had
a third strategy, one of guarded behaviour.

From the video footage, the ambivalent child is observed to approach her mother for
comfort, and yet is not entirely willing or able to accept full comfort. For example, we see
the child asking to be picked up, but holding a hand between herself and her mother, as
if making sure that her mother does not get too close. At mildly stressful times, the child
stays close to the mother but does not interact with her. We call this the “Half-Go” action:
the child is making a guarded request for comfort. If the child chooses the “Half-Go” action
and her mother attends to her then she gets some reduction of stress, but not as large a
reduction had she approached in an unguarded manner. On the other hand, if her mother
ignores her, then she is not as upset as she would have been had she approached in an
unguarded manner. And so, the payoffs for the “Half-Go” strategy would be somewhere
between the payoffs for the “Go” and “Don’t Go” strategies.

The child’s payoff matrix is shown in Table 2. The payoffs for the “Go” and “Don’t
Go” strategies are as before (Section 2.1.1). If the child half-goes to the mother for comfort
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Mother’s action
Attend Ignore

q 1− q
Child’s Go 1 −s
action Don’t Go 0 0

Half-Go h −t
Table 2 The child’s payoff matrix for the one-person game in which she has three choices.

and her mother attends to her, then her payoff is h where 0 < h < 1. If she half-goes to
her mother and is ignored, then her payoff is −t. As before, there are two cases for the sign
of t. If t < 0 then she receives comfort from being around her mother even if her mother
ignores her; in this case, we assume −1 < s < t < 0. If t > 0 then she is stressed by her
mother’s ignoring her; in this case, we assume 0 < t < s.

Is it ever rational for the child to choose this new strategy? As before, if t ≤ 0 then
“Go” is a dominant strategy. No matter what the mother does, the child should never
choose “Half-Go” or “Don’t Go”.

We now consider the 0 < t < s case, for which there is no dominant strategy. If the child
plays the game many times, always choosing the same option, then her expected payoff will
be one of

PGo = q − (1− q)s,
PDon’t Go = 0.

PHalf-Go = hq − (1− q)t.

Figure 1 gives the graphs of these expected payoffs as a function of q. In both plots, the
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Figure 1 The lighter lines are the graphs of the expected payoffs PGo, PHalf-Go, and
PDon’t Go for the one-person game with the payoff matrix given in Table 2. The heavy
curve is the maximum expected payoff. Left: h < t/s, Right: h > t/s.

line connecting (0,−s) to (1, 1) is the graph of PGo, the line connecting (0,−t) to (1, h) is
PHalf-Go, and the line connecting (0, 0) to (1, 0) is PDon’t Go. The heavy curve is the graph
of the maximum expected payoff — this curve gives the child’s optimal strategy for each
value of q. Either there are two optimal behaviours possible, as in the left plot of Figure 1,
or there are three, as in the right. To distinguish between these situations, one finds that
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the graphs of PGo and PHalf-Go intersect at (qc, Pc) where qc = (s − t)/(1 − h + s − t) and
Pc = (sh− t)/(1−h+s− t). If h < t/s then Pc < 0 and there are only two possible optimal
strategies: whatever the value of q, PHalf-Go is always less than either PGo or PDon’t Go. If
h > t/s then Pc > 0 and there is an interval of q values for which the “Half-Go” strategy
is optimal. The balance between h and t/s reflects the balance between the decrease of
comfort received when a guarded request is attended to (h/1) and the decrease in stress
caused when a guarded request is ignored (t/s).

Here is a way to view the condition for viability of the “Half-Go” strategy. Consider a
mixed strategy of “Go” and “Don’t Go” for the child, which we shall call “Random-Go”,
designed to offer the same average level of comfort to the child as does “Half-Go” in those
cases when the mother attends. That is, the child chooses “Go” with probability h and
chooses “Don’t Go” with probability 1 − h. When the mother attends, the payoff to the
child is 1 · h + 0 · (1 − h) = h, which is the same as for “Half-Go”. How does “Random-
Go” compare overall with “Half-Go”? When the mother ignores, the child’s payoff under
“Random-Go” is −s · h + 0 · (1− h), which equals −sh. On the one hand, if −sh is better
than the payoff under “Half-Go”, −t, then it can be seen that “Random-Go” dominates
“Half-Go”. That is, if −sh > −t (equivalently, if h < t/s), then the child will never want
to use the “Half-Go” strategy. On the other hand, if h > t/s, then “Half-Go” dominates
“Random-Go”; indeed, it turns out that for some values of q, “Half-Go” is better than any
mixed strategy that combines “Go” and “Don’t Go”. If “Random-Go” had been designed
to offer the same average level of comfort to the child as does “Half-Go” in those cases when
the mother ignores, then one would find that the child would choose “Go” with probability
t/s and one would come to the same conclusion about h < t/s and h > t/s.

In Section 2.1.1, we analyzed the game in terms of the child’s stress response, s, relative
to a critical stress level, scrit = q/(1−q). In doing this, we had taken the parenting strategy,
q, as fixed. We also took as fixed the child’s stress reduction when she sought attention and
her mother attended to her. This was a little less obvious because it was reflected in the 1
in the payoff matrix of Table 1. In fact, this was originally a free parameter that became 1
when it was used to normalize the entire payoff matrix.

If the child has three options, there are five parameters: q (the parenting strategy), 1
and h (the stress reductions when attended to), and s and t (the increases in stress when
requests for comfort are ignored). In Figure 2 we hold q, 1, and h fixed and find that the
threshold behaviours for s and t are determined by scrit and hscrit. In the plot to the left,
we have taken h = 1/3, but we get the same qualitative picture as long as 0 < h < 1. In
this case, the region 0 < t < s is divided into three regions, with one strategy being optimal
in each region. To better understand the situation, we consider the extremal cases of h = 0
and h = 1. As h decreases to 0, the points A and B converge to the point (scrit, 0) and
“Half-Go” is no longer an optimal strategy. The resulting h = 0 plot is shown in the top
right of Figure 2. The reason for the disappearance of “Half-Go” is apparent if one looks
at the left plot of Figure 1: as h → 0, the point (1, h) moves down to (1, 0) and PHalf-Go

will always be less than PDon’t Go, whatever the values of s and t. (This can also be seen
directly from the payoff matrix.) At the other extreme, as h increases to 1, the points A
and B converge to the points (0, 0) and (scrit, scrit) respectively and “Go” is no longer an
optimal strategy. The resulting h = 1 plot is shown in the bottom right of Figure 2. One
can either understand this by taking h → 1 in the right plot of Figure 1 or by noting that
if h = 1 in the payoff matrix in Table 2 then the “Half-Go” strategy dominates the “Go”
strategy, whatever the values of s and t (with s > t).
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Figure 2 In all three plots, the dashed line reflects the bound t < s. The points A and B
are ((1− h)scrit, 0) and (scrit, hscrit) respectively. Left: h = 1/3. There are three regions,
with one strategy being optimal in each region. Right: There are only two possible optimal
strategies. Top: h = 0. Bottom: h = 1.

2.2 A Two-Person Game. In using our one-person game as a model, we took the
mother’s parenting strategy as fixed and known to the child. We now take into account that
attending to the child is at a cost to the mother and that she might choose her strategy in
a way that reflects both this cost and what she thinks her child might do. To do this, we
use a two-person game with two payoff matrices, one for the child and one for the mother.
It should be noted that notions like “optimality” may not be appropriate in multiplayer
games where dominating strategies can cycle (see [18] for a broad overview and discussion).
For instance, strategy A may dominate B meaning that A will always yield a payoff greater
than strategy B. But, C may dominate A and B may dominate C. As we shall see, some
situations in the game model yield dominant strategies for both players, and some will not.

As in Section 2.1, the mother executes her options, “Attend” and “Ignore”, with the
strategy ~q = (q, 1 − q) where 0 ≤ q ≤ 1. If q = 0 or 1 then ~q is called a “pure” strategy
and otherwise is called “mixed”. Similarly, the child executes her options, “Go” and “Don’t
Go”, with the strategy ~p = (p, 1 − p). Whether or not the child seeks comfort from her
mother in a particular instantiation of the game is determined by the flip of a p-weighted
coin.

Mother’s action
Attend Ignore

q 1− q
Child’s Go p (1, 1− c) (−s,−s)
action Don’t Go 1− p (0,−c) (0, 0)

Table 3 The payoff matrices for the two-person nonzero-sum game. For each combination
of choices, the payoff is represented as an ordered pair. The child’s payoff is the left element
of the ordered pair and the mother’s payoff is the right element. For instance, if the child
goes to the mother and the mother attends, the child’s payoff is 1 and the mother’s is 1−c.
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Table 3 gives the payoff matrices for the child and her mother. The child’s payoff
matrix is the same as in Section 2.1.1. The mother’s payoff matrix reflects two things.
First, whatever increase or decrease there is in the child’s stress levels is also a gain or a
loss for the mother, hence the 1 and the −s in the mother’s payoff matrix. In other words,
we assume the mother accurately interprets the child’s responses to attention and develops
her strategy accordingly. In addition, attending to her child takes energy and takes time
away from some other activity she might prefer doing, hence the −c in the payoff matrix.

To analyze the game, we use concepts from the non-cooperative theory of nonzero-sum
games. The mother-child game is considered non-cooperative because the players are unable
to make a binding agreement on a joint choice of strategy. Using Table 3, we can construct
the individual payoff matrices for the players. Each entry of the matrix is an ordered pair.
The child’s payoff is the first element of each ordered pair, and the mother’s payoff is the
second element. We denote the child’s payoff matrix by A and the mother’s payoff matrix
by B, so

A =
[

1 −s
0 0

]
, B =

[
1− c −s
−c 0

]
. (2.3)

If the players play the strategies ~p and ~q then the child’s payoff is ~pTA~q and the mother’s
payoff ~pTB~q. This is not a zero-sum game where “money” into one player’s pocket comes
out of the other player’s pocket: A 6= −B. Our discussion will focus on the payoffs for
Nash equilibria, which are pairs of strategies where a unilateral change in strategy will
not improve the player’s payoff even if the player knows the opponent’s strategy. One
interesting difference between zero-sum games and nonzero-sum games is that in a zero-
sum game, if there are two Nash equilibria (~p, ~q) and (~p∗, ~q∗) then their payoffs are the
same: ~pTA~q = ~p∗TA~q∗. We will see below that because the mother-child game is nonzero-
sum, one can have two pairs of Nash equilibria which have different payoffs.

To simplify the game further, we can reduce the payoffs into broad categories where
we replace the values of the payoff with an integer from best (4) to worst (1) denoting the
relative size of the payoff to either the mother or the child. For instance, if −s < 0, the

ordinal representation for the child’s payoff is always
[

4 2
3 3

]
. The same information could

be presented as
[

3 1
2 2

]
because decisions are based on the relative payoffs; the relative

order of the elements is the critical feature. We classify all possible outcomes using a binary
tree representation where each branch corresponds to a comparison between entries. In the
case where s is negative, we assume that −s < 1 because should the child approach her
mother, it would only make sense for the payoff to be greater if the mother pays attention
than if she did not. Type I and II is distinguished by whether 0 < −s < 1, branching left,
and 0 > −s, branching right. Similarly, subtypes A and B are distinguished by 1− c < −s,
branching left and 1 − c > −s, branching right. Sub-types 1 and 2 are distinguished by
1 − c < 0 and 1 − c > 0, branching left and right, respectively. Finally, sub-sub-types “a”
and “b” are distinguished by −c < −s and −c > −s, branching left and right, respectively.
The full classification is shown in Figure 3. In some cases, the ordinal representation is the
same for all sub-subtypes. In these cases, “Type I B” refers to all subordinate “Type I B 1
a,” “Type I B 1 b,” etc...

We show all eight payoff configurations in Figure 4 grouped into four broad categories
by the positions of the Nash equilibria.
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1−c < −s 1−c > −s

0 > −s

1−c < 0

−c < −s

1−c > 0
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Figure 3 A diagram of possible parameter configurations for the payoff matrix given in
Table 3. Every terminal node is a distinct configuration. Terminal nodes are coloured by
groups listed in Figure 4: Group 1 (circles), Group 2 (square), Group 3 (diamond) and
Group 4 (triangle).

Group 1:
(4,2) (3,4)
(2,1) (2,3)
Type I A 1

(4,3) (3,4)
(2,1) (2,2)
Type I A 2

Group 2:
(4,4) (3,3)
(2,1) (2,2)
Type I B

Group 3:
(4,2) (2,3)
(3,1) (3,4)
Type II A

Group 4:
(4,3) (2,2)
(3,1) (3,4)
Type II B 1 a

(4,3) (2,1)
(3,2) (3,4)
Type II B 1 b

(4,4) (2,2)
(3,1) (3,3)
Type II B 2 a

(4,4) (2,1)
(3,2) (3,3)
Type II B 2 b

Figure 4 The payoff matrices in Table 3 can be reduced to four general categories. Nash
equilibria are indicated in bold.

For all Type I scenarios where 0 ≤ −s ≤ 1, the first row of the child’s payoff matrix is
greater than the second row. Thus, the “Go” strategy dominates the “Don’t Go” strategy
and the child should always play “Go”. The mother should choose whichever option is
better for her, “Ignore” or “Attend”. In the first grouping in Figure 4, it is better for her to
“Ignore” and in the second group it is better for her to “Attend”. In the third group, the
mother’s “Ignore” strategy is dominant for Type II A scenarios. Given this situation, the
child is always better off with “Don’t Go”. The remainder of our discussion focuses on the
Type II B configurations. This famous game is often referred to as The Battle of the Sexes
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(see [3] for example, for a discussion of many interpretations). In fact, Bernard applies this
game to marriage counselling in [4] in a context very similar to attachment.

A pair of strategies, (~p∗, ~q∗), is called a Nash equilibrium if neither player can obtain a
higher payoff by unilaterally changing her strategy — if she knew her opponent’s strategy
and her opponent could not change her strategy, would she then change her own strategy?
Nash equilibria occur when,

~p∗TA~q∗ ≥ ~pTA~q∗ for all probability vectors ~p,

~p∗TB~q∗ ≥ ~p∗TB~q for all probability vectors ~q.

Because neither player would switch her strategy unilaterally, the players can move away
from a Nash equilibrium only through some form of cooperation or intervention.

It is easy to find all Nash equilibria that are pure strategies. If Ai0j0 is greater than or
equal to all other entries in the j0 column of A and if Bi0j0 is greater than or equal to all
other entries in the i0 row of B then the pure strategies (~p∗, ~q∗) with pi0 = 1 and qj0 = 1
are Nash equilibria. Doing this, we find that our two-person game has two Nash equilibria.
First, there is p = 0 and q = 0 (“Don’t Go” and “Ignore”) where the payoff to each player
is 0. Second, there is p = 1 and q = 1 (“Go” and “Attend”) where the payoff to the child
is 1 and the payoff to the mother is 1− c.

There is another Nash equilibrium that is easy to find: (~p∗, ~q∗) where both ~p∗ and
~q∗ are “equalizing” strategies. An equalizing strategy is one that gives the same expected
payoff to your opponent, no matter what your opponent does. (Note that you need to know
your opponent’s payoff matrix in order to find your equalizing strategy.) The child seeks a
strategy ~p∗ such that

(~p∗TB)1 = (~p∗TB)2 =⇒ p∗ − c = −sp∗,

and the mother seeks a strategy ~q∗ such that

(A~q∗)1 = (A~q∗)2 =⇒ (1 + s)q∗ − s = 0.

The child’s equalizing strategy is p = c/(1 + s) and the mother’s is q = s/(1 + s). (This
Nash equilibrium only applies to Group 4 scenarios because p and q are probabilities having
a range of [0, 1].) The child’s expected payoff is 0 and the mother’s expected payoff is
−cs/(1 + s). If c > 0 or s > 0 this Nash equilibrium is a pair of mixed strategies and is
therefore distinct from the two Nash equilibria corresponding to pure strategies.

It is not hard to check that these three are the only Nash equilibria in this game, but
dominating strategies, strategies maximizing the payoffs for the individual players, vary
depending upon parameter values.

Now, we can summarize the behaviours that would result from the four types of games
in the two-player model shown in Figure 4.

Group 1: There is only one Nash equilibrium, the pure strategy pair “Go” - “Ignore”.
This would appear as a secure relationship because the mother regulates the
child’s stress, even though the mother is ignoring the child.

Group 2: There is only one Nash equilibrium, the pure strategy pair “Go” - “Attend”.
This would appear as a secure relationship as well.

Group 3: There is only one Nash equilibrium, the pure strategy “Don’t Go” - “Ignore”.
This is an avoidant relationship.
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Group 4: There are three Nash equilibria, two pure pairs “Go” - “Attend” and “Don’t
go” - “Ignore” as well as the mixed, equalizing strategy. The first two corre-
spond to secure and avoidant relationships just as in the scenarios in Groups
1-3. Unlike the other scenarios, one of the players receives the best possible
payoff and the other player receives a payoff that is less than the best possible
payoff. This could lead to resentment if the players are non-myopic, mean-
ing the mother and child are capable of understanding the outcomes of other
combinations of decisions. The mixed, equalizing strategy has the qualities
of an ambivalent relationship. The probability that the child seeks comfort is
proportional to c so the more it costs the mother to attend, the clingier the
child will be. Likewise, the probability that the mother attends to the child
is proportional to s. The more stress the child experiences by rejection, the
more likely the mother is to provide comfort.

We have identified equilibrium configurations in the two-player model for mother-child in-
teractions. We have not gone further to hypothesize how mother and child move from one
strategy to another because such speculations would go well beyond anything we could de-
fend for two reasons. One, we have no psychological data on how the subjects formulate
or adjust their strategies. Two, the mathematical theory of determining equilibria in game
theory is quite simple when compared to what is known about formulating strategies based
on these equilibria. For instance, on page 359, McKinsey points to a payoff matrix qual-
itatively equivalent to our Group 4 scenarios, and points out that “It must be remarked
that Nash’s theory ... has serious inadequacies and certainly cannot be regarded as a de-
finitive solution of the conceptual problems in this domain... The theory of Nash seems to
throw little light on the question of how to play a game having such a pair of payoff matri-
ces” [16]. Certainly, one can argue that pure strategies explain the existence of secure and
avoidant relationships, and that once these strategies are employed, it would be irrational
for either the mother or child to change unilaterally in certain parameter regimes in Groups
1-3 regimes. The dynamics underlying situations like Group 4 are the subject of continued
investigation and deliberation. For instance, Steven Brams offers one model for negotiated
solutions in ordinal games called the Theory of Moves to find non-myopic equilibria that
avoid cycling or to determine a unique resolution for both players [6, 7, 8, 13]. In our model,
the mixed strategy has features resembling an ambivalent relationship. While the process
by which the strategies of the mother and child evolve over time remains fertile ground for
investigation, we see that this simple two-player, non-cooperative game with two simple
parameters yields a rich mathematical structure that recovers three principal attachment
behaviours observed in clinical experiments.

3 A dynamical systems approach

The “strange situation” experiment was designed to help examine a child’s relationship
with her mother under some stressful conditions. In particular, the experiment can be used
to examine the mother’s ability to down-regulate the anxiety of her child. The source of the
anxiety in the experiment is due to the mother leaving the room. The child’s reaction to the
mother’s return to the room is very telling of the child’s type of attachment to her mother,
and how much comfort and security she derives from her mother. In particular, children’s
response to this situation correlates well to their general modes of behaviour, described in
Section 1.
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To attempt to mathematically model and distinguish these behaviours we must consider
some measurable quantity available from the data of the experiment. One such quantity
is the physical distance between the mother and the child. However, physical distance is
not necessarily a sufficient indicator of the child’s ability or need to derive comfort from
her mother, because, for instance, visual contact may serve the same purpose. Thus, we
consider instead “emotional distance”. This concept along with a deterministic model that
gives the time evolution of this quantity, will be described in detail in Section 3.2. Another
measurable quantity of interest is the child’s level of anxiety. In the following section, we
consider a simplified model that temporarily ignores the distance to focus on the child’s
anxiety level as a function of time, A(t).

3.1 The anxiety equation. In this section we derive an equation giving the evolution
of the anxiety A. Details of the definition of anxiety are left open as some aspects may be
specific to different situations, but generally an increase in anxiety will imply a decrease in
comfort and feelings of well-being. The anxiety level may be measured using some externally
visible measure of the child’s comfort or emotional state, although this may be difficult, or,
perhaps more quantitatively, via physiological variables such as heart rate or the level of
cortisol in the child’s saliva. The base-line of anxiety may be determined by considering the
child in a familiar situation, say at home with the mother.

As a first version for the equation describing the evolution of anxiety, we write

m
d2A

dt2
+ b

dA

dt
+

1
r
(A− Ā) = S(t), A(t = 0) = Ā, A′(0) > 0. (3.1)

Here S(t) ≥ 0 is a function describing the externally imposed stress on the child; in par-
ticular we take it to be an indicator function of the times when the mother is absent, see
Figure 5(left). The initial anxiety is assumed to be the baseline level with a tendency for
increasing anxiety (positive slope) due to entering an unfamiliar environment.

The parameter m is a measure of the maturity or emotional stability of the child.
The parameters r and b determine how the child recovers to her baseline emotional state
after a temporary stressful situation. The parameter b is related to the insensitivity of the
mother to the child’s needs, while the parameter r corresponds to a notion of mother-child
distance. The parameter r is in fact related to the ability of the mother to down-regulate
the child’s anxiety, and is likely to change depending on the immediate situation, and thus,
in Section 3.2, we will consider it as a variable and derive an equation to model its time
evolution. These parameters and their interpretation are discussed further in the following
sections.

This model is analogous to a mechanical system describing a damped-driven harmonic
oscillator, a classic problem considered in basic control theory [11]. In such a system, m is
the mass, b is a damping coefficient, 1/r is a spring constant for a linear restoring force and
S(t) is an external driving force. The motivation for this model is that for some parameter
values, the anxiety following the stress-event can be sustained (with slow decay) near the
peak induced anxiety, while for other values, the anxiety can rapidly decay. This is in
agreement with the observed behaviours for insecure (ambivalent and avoidant) and secure
infants respectively.

The fact that (3.1) is a linear equation is also convenient because an analytic solution
is possible:

A(t) = c1e
λ1t + c2e

λ2t + Ap(t), (3.2)



74 Mathematical Models of Mother/Child Attachment

Mother return sMother present

Mother leaves

t

St
re

ss

403020100

0.1

0
More Secure

Less Secure

t

A
nx

ie
ty

403020100

0.15

0.1

0.05

0

Figure 5 (Left) Stress generated by the temporary absence (3 minutes) of the mother,
(Right) Anxiety response generated by (3.1) with m, b fixed for different values of r (the rate
of anxiety decay is inversely related to r). An increase in r corresponds to an increasingly
less secure anxiety response.

where c1 and c2 are constants that depend on the initial conditions, the eigenvalues λi are
given by

λ1,2 =
−b

2m

[
1±

√
1− 4m

rb2

]
, (3.3)

and Ap(t) = rS̄+Ā is a particular solution that must be included when an imposed stress is
present (i.e. when the equation is inhomogeneous; see, e.g., [5]). A mathematical artifact of
(3.1) that is inappropriate for a model of anxiety is that oscillatory solutions are possible if
the parameters are in the “under-damped” regime [5]. To exclude this possibility, we must
be in the “over-damped” regime, and thus we require that the parameters satisfy

rb2 > 4m. (3.4)

That is, our model is valid when m is small, i.e. when the child has little ability to self-
regulate her anxiety, which is expected to valid for children of the ages that are considered.

Given the assumption (3.4), if b, r > 0, unforced solutions will exhibit only exponentially
decaying modes, dominated by the slowest decaying mode:

λ2 = − b

2m

[
1−

√
1− 4m

rb2

]
∼

{
−1/br if rb2 � 4m

−b/(2m) if rb2 ∼ 4m
(3.5)

In Figure 5(right), we present a simulation of (3.1), for a stress profile, given on the
left hand side of the figure, that mimics that of the strange situation. That is, the induced
stress is zero before the mother leaves the room, jumps to a high constant value while the
mother is absent, and again drops to zero when the mother returns. The different anxiety
profiles are produced by varying the parameter r while the other parameters are held fixed.
As r is increased, it can be seen that (1) the steady state of anxiety increases, and (2) that
the rate of decay of anxiety decreases, in particular, the rate decay is inversely related to r.

We conclude this section with a nonlinear generalization of (3.1),

d

dt

(
m

dA

dt

)
+

[
ρ2A2 + b

] dA

dt
+

1
r

[
(A− Ā)+

]β = S(t). (3.6)

The changes in this model allow for possible effects not considered in (3.1):
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• The damping term (i.e., the second term on the left hand side) has been generalized to
be of van der Pol type for ρ > 0. In this case the damping will increase with increasing
anxiety, and thus the larger the child’s anxiety becomes the more difficulty the child
will have in recuperating.

• Finally, the restoring force (i.e. the third term on the left hand side) has been gener-
alized to describe a nonlinear stress-anxiety (emotional strain) response parametrized
by the exponent β. Three regimes are

0 < β < 1 “Hard case”: a child with a higher tolerance for stress
β = 1 “Linear”: direct proportional response to stress
β > 1 “Soft case”: a child more likely to develop high anxiety

(3.7)

A series of simulations indicating these three cases is shown in Figure 6. In order for
these cases to hold, we require A < 1, i.e., that the anxiety variable A is scaled by
its maximum value. Also note the use of the “one-sided spring model”

(A− Ā)+ =

{
A− Ā if A > Ā

0 else
(3.8)

This describes the situation that if a child’s anxiety somehow falls below Ā, then the
restoring force would not work to drive it up (back to Ā).

A simulation of (3.6) with r > 0 and ρ = 0 is shown in Figure 7. Here the imposed stress
S(t) describes the mother leaving and returning twice, first at t = 20, then again at t = 40.
Parameter values are selected to yield “secure” behaviour for β = 1; anxiety rises when the
room is entered (t = 0) and then the mother leaves, but in all cases it rapidly decays. For
comparison, a “soft” child, with β > 1 but other parameters unchanged, exhibits a much
slower decay of anxiety with some accumulation being evident, as in the case of insecure
children. Conversely, a “hardened” child (β < 1) exhibits more rapid dissipation of anxiety
than the linear case. Even more strikingly, their anxiety can go below their baseline level;
for capturing this behaviour and avoiding spurious oscillations the use of (3.8) is essential.

β > 1

β < 1

Anxiet y (A − Ā )
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re

ss

0
0

Figure 6 β-dependence of the stress-anxiety response.

At a phenomenological level, these second order differential equations seem to give a
reasonable description of the anxiety response to imposed stresses in the experiment. As
the parameters of the model described in this section are varied, the solutions describing
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Figure 7 The influence of changing β in (3.6) for a linearly-secure child subjected to
successive stresses.

the response to the imposed stress is similar to the responses of a secure or insecure child.
However, the model cannot distinguish between ambivalent and avoidant children as their
anxiety response should be somewhat similar. In this section, the parameters are assumed
to be constant; this is a convenient simplification, but in general, they may exhibit both
gradual evolution on long timescales as well as dynamics on shorter time intervals. In
particular, there is expected to be short-term variation of r. It is this that we model in
the next section. The variety of responses of r to the remaining parameters will distinguish
between all attachment types.

The essential element in describing the nature of attachment is relating these parameters
of the child’s behaviour to properties of the mother’s parenting behaviours. This will be
the focus of Sections 3.2 and 3.3.

3.2 The mother-child distance equation. The previous section describes an equa-
tion for the time evolution of a child’s anxiety in a mother-child relationship. The coefficient
of the “force” in (3.1) and its nonlinear extension (3.6) is written in terms of a “distance”
variable r. This notion of distance is closely related to the actual physical distance between
the mother and the child. However, we introduce instead a concept of “emotional distance”
between the mother and the child. This concept is more flexible and includes long range
interactions between a mother and her child. For instance, visual and verbal contacts be-
tween the mother and the child can be effective means by which a mother can aid in the
regulation of her child’s anxiety, even when the child is not physically close to the mother.

We derive an equation for the child’s distance to the mother in terms of the mother’s
parenting style. The main parenting parameters to be used are

• a =inconsistency of the mother’s response to the child’s need, and
• b =maternal insensitivity,

where the maternal insensitivity parameter b has already been used in the damping coeffi-
cient of (3.1). The emotional distance is described by the variable r = r(t). We will assume
that the equation for the time evolution of emotional distance is given by the differential
equation

dr

dt
=

b

r
− aAr +

c

1 + A− Ā
, (3.9)
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where A = A(t) is anxiety, Ā is again the baseline anxiety of the child and c is the intrinsic
curiosity of the child at baseline anxiety.

The first term on the right hand side of (3.9) describes the attraction/repulsion the
child feels depending on the parenting style of the mother. For high b values (high maternal
insensitivity), this term represents a strong impetus to increase emotional distance r when
r is not large. However, the effect of this term decreases rapidly as r increases, indicating
that a child will still look to her mother to help her regulate her anxiety, in particular in
situations of high anxiety. For b close to zero, the effect of this term only becomes important
for values of r close to zero. We take b > 0, which ensures that if r > 0 initially, then it
will be so for all time. A mother will have a high value of b if she does not respond to her
child’s demands during times of anxiety, e.g. the mother is dismissive, responds grudgingly,
or ignores the child. A yet higher value of b will result if a mother’s response to the child’s
demands leads to increased anxiety, e.g. a mother becomes angry at the child for demanding
attention, and shouts at the child, or in extreme cases, physically harms the child. A low
value of b is associated with a parenting style in which the demands of the child are met
with sensitivity from the mother.

The second term on the right hand side of (3.9) describes the decrease of the child’s
emotional distance r as a factor of both anxiety A and the current emotional distance. Thus,
we assume there is a natural tendency for the emotional distance to decay exponentially
with rate constant aA. The larger the anxiety, the parameter a, or the emotional distance,
the faster the decay will be. The parameter a depends on the parenting style of the mother.
This parameter will be larger if the mother’s response to the child’s demands during a time
of anxiety is inconsistent, i.e. sometimes the mother responds positively, and sometimes
the mother responds grudgingly, dismissively, or ignores the child. In this situation, the
emotional distance will tend to decrease relatively quickly even in situations of moderate
anxiety, i.e. the child will tend to seek anxiety regulation even when anxiety is not high,
because of the uncertainty associated with acquiring the regulation. In the case when a
parent provides either consistently positive or consistently negative response, the value of
the parameter a will be lower, and the emotional distance will decrease less rapidly for a
given value of A. This reflects that for a given level of anxiety, the child will be less likely
to seek comfort, either because she knows she will obtain comfort when she needs it, or
because she knows that she will not obtain comfort when she seeks it. However, regardless
of the value of a, i.e. for all children, this term will represent a large impetus to reduce
emotional distance r when anxiety A is high.

Finally, the last term on the right hand side of (3.9) describes the child’s impetus to
explore. This term will be small when the anxiety is large, i.e. the child will tend to explore
only in low anxiety situations.

In Figure 8, we plot the right hand side of (3.9) as a function of r, for various values of
the parameters a and b, with anxiety A fixed at its baseline Ā. The values of r at which
the graph crosses the horizontal axis correspond to values for which dr/dt = 0, and thus
represent equilibrium solutions of (3.9). Figure 8 shows the smallest such solution; a second
equilibrium exists for a larger value of r. However, we do not try to find an interpretation
for this second solution at this stage. We see that children with comparatively low a and b
values and children with similar low a value but with a higher b value reach close equilibria.
However, if both a and b are raised, the curve crosses the r axis at a significantly lower
value. To further elucidate the effect of the parameters on the equilibrium solution we
set dr/dt = 0 in (3.9), and solve for r to obtain the equilibrium surface r = φ(a, b). See
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Figure 9 Equilibrium solutions of (3.9) plotted as a function of a and b.

almost exclusively on the parameter a. That is, the child’s preferred emotional distance at
a time of low anxiety is determined to a large extent by the inconsistency of the mother,
while the maternal insensitivity has relatively little effect. Thus, the child of an inconsistent
mother (high a) will gravitate to a low emotional distance even at a time of low anxiety.

3.3 The Complete Model. We now turn to the analysis of the full model incorpo-
rating anxiety and emotional distance. In the case in which we consider the linear anxiety
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equation (3.1), we have

m
d2A

dt2
+ b

dA

dt
+

1
r
(A− Ā) = P tanh(r) + S(t),

dr

dt
=

b

r
− aAr +

c

1 + A− Ā
,

(3.10)

where we have added a term P tanh(r) in the anxiety equation which corresponds to the
increase of anxiety that is induced as the emotional distance is increased, where P > 0 is
a constant. The function tanh(r) is used to model the saturation of imposed stress on the
child as the emotional distance r becomes large.

Figure 10 shows numerical simulations of system (3.10) for values of a and b that distin-
guish between the three types of mother-child attachment: secure, ambivalent, and avoidant.
The simulations begin at a time of high stress, e.g., in the strange situation experiment when
the mother re-enters the room after being absence for a short time. Unlike in Section 3.1, we
assume that the absence of the mother induces the same level of anxiety in all the children,
regardless of their type of attachment to their mother. Thus, we take the initial conditions
to be the same in all simulations. As is seen in Section 3.1, the effect of the mother’s return
on the anxiety A distinguishes the secure child from the ambivalent and the avoidant child;
the secure child’s return to baseline anxiety is very rapid, while the anxiety of an avoidant
or ambivalent child shows slower decay. However, the anxiety response is not sufficient
to distinguish the avoidant child from the ambivalent child. From the graph of emotional
distance r, we see that the dash-dot curve represents an initial decay of r that is much more
rapid than that of the dashed curve, and the minimum value of r for the dash-dot curve is
significantly smaller than that of the dashed curve. We conclude that the dash-dot curve
describes the dynamics of the anxiety A and emotional distance r of an ambivalent child,
because we expect such a child to seek out her mother, even though she is only moderately
comforted by her. We also conclude that the dashed curves exhibit the dynamics of an
avoidant child, because we expect that, in a situation of high anxiety, such a child would
not wish to be too far from her mother, although she would still wish to maintain a ‘buffer
zone’ between her and her mother, and we would expect her anxiety to be dissipated rel-
atively slowly. Thus, the secure child is characterized by a mother with a parenting style
with low inconsistency a and low insensitivity b, an ambivalent child is characterized by
both a higher inconsistency a and higher insensitivity b, while the avoidant child has low
inconsistency a, but a higher value of insensitivity b.

3.4 Analysis of the complete model. We now proceed to a linear stability analysis
of the equilibrium solution of the complete model (3.10).

3.4.1 Existence and uniqueness of equilibrium solution. We suppose that S(t) ≡ 0 and
find the equilibrium solutions of system (3.10) rewritten as a first-order system:

dA

dt
= B

dB

dt
=

1
m

(
−bB − 1

r
(A− Ā) + P tanh(r) + S(t)

)
dr

dt
=

b

r
− aAr +

c

1 + A− Ā
.

(3.11)
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Figure 10 Numerical simulations of the full system as the mother returns to the room.
Parameter values are fixed at c = 2, m = 0.001, Ā = 0.05 and P = 0.075. Then a and b
are varied; ‘secure’: a = 10, b = 0.1, ‘avoidant’: a = 10, b = 4, ‘ambivalent’: a = 30, b = 4.

Set B = 0, then the second equation yields

A = rP tanh(r) + Ā.

Substituting in the last equation we have

G(r) =
b

r
− a

(
rP tanh(r) + Ā

)
r +

c

1 + rP tanh(r)
= 0. (3.12)

For b, r > 0 and all other parameters nonnegative, we have that lim
r→0

G(r) > 0 and

dG

dr
= − b

r2
− a(P tanh(r) + rP (1− tanh(r)2))r − a(rP tanh(r) + Ā)

−c(P tanh(r) + rP (1− tanh(r)2))
(1 + rP tanh(r))2

is negative. This guarantees the existence of a unique equilibrium solution for all values of
the parameters.

Figure 11 shows G(r) of (3.12) plotted as a function of r for various values of a and b,
where, as before, we set the parameter values c = 2, m = 0.001, Ā = 0.05 and P = 0.075.
The points at which the graph crosses the r-axis represent solutions of (3.12), and thus,
equilibrium solutions of the full system (3.10). The dotted curve, for which a = 30 and
b = 4, intersects at r ≈ 1.27, the solid curve, for which a = 10 and b = 0.1, crosses at
r ≈ 1.36 and the dashed curve, for which a = 10 and b = 4, crosses at r ≈ 1.96. Let r = r∗

be the solution to (3.12) and A∗ = r∗P tanh(r∗) + Ā. Then, the equilibrium solution is at
(A,B, r) = (A∗, 0, r∗).
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3.4.2 Linear stability analysis. We now compute the linear stability at this equilibrium
solution. The linearization at (A∗, 0, r∗) is

L =



0 1 0

− 1
r∗m

− b

m

A∗ − Ā

m(r∗)2
+ P tanh′(r∗)

−ar∗ − c

(1 + A∗ − Ā)2
0 − b

(r∗)2
− aA∗


. (3.13)

Setting m = 0.001, c = 2, Ā = 0.05 and P = 0.075, the characteristic equation for L is

p(λ) = a0λ
3 + a1λ

2 + a2λ + a3,

where a0 = 1, and

a1 =
aAr2 + b + 100r2b

r2

a2 =
100(baAr2 + r + b2)

r2

a3 =
−1

r3(A + 0.5)2
(
25b + 100bA + bA2 + 75rA + 150aA2r2 + 375 tanh(r)r3

+125ar4 tanh(r) + 5ar4A2 tanh(r)− 12.5 ar2 + 200aA3r2 − 37.5 r
+50ar4A tanh(r)

)
.

If b, r > 0, one can easily verify that a1, a2 > 0. The Routh-Hurwitz criterion [12] states
that all the eigenvalues of L have negative real parts if and only if

a0 > 0, ∆1 = a1 > 0, and ∆2 = a1a2 − a3 > 0.

We verify asymptotic stability for the parameter values of the numerical simulations of
Figure 10; the equilibrium solutions have coordinates (A, 0, r) ≈ (0.13, 0, 1.27) for a = 30,
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b = 4, (A, 0, r) ≈ (0.14, 0, 1.36) for a = 10, b = 0.1 and (A, 0, r) ≈ (0.19, 0, 1.96) for a = 10,
b = 4. Using Maple, it is easy to compute that in all cases ∆2 is a positive number of
the order 105. We see that the equilibrium solution is linearly stable in all these cases.
Therefore, after a perturbation (within the stability basin) the dynamics relax back to the
equilibrium solution.

These stable equilibrium solutions indicate the long-time behaviour of the model (3.10).
That is, they indicate the anxiety A and emotional distance r that we expect the child to
have after they recover from the stressful event. If we correlate the different parameter values
with the different attachment types as we did for the simulations displayed in Figure 10, we
see that, in this case, the ambivalent child has the lowest emotional distance and anxiety,
while those of the avoidant child are the highest. This is indeed what we might expect; the
increased equilibrium anxiety of the secure child relative to that of the ambivalent child is
due to the extra anxiety induced by ‘exploration’, i.e. the increased emotional distance.
It should be noted that the equilibrium for the secure child depends significantly on the
exploration parameter c, while the equilibrium for the ambivalent child is less sensitive to
this parameter. Specifically, an increase in c leads to an increased gap between the emotional
distance equilibria of the ambivalent and secure child.

3.5 Slow-time evolution of behavioural parameters. In the previous sections, we
find that the different behaviour that is observed in the model (3.10) for different values of
the inconsistency parameter a and the insensitivity parameter b are sufficient to distinguish
the three different attachment types. We have assumed that the values of these parameters
are constant, but in a fuller description, these values will depend on the influence of the
environment, and predominantly the actions of the mother toward the child. Some of the
fundamental issues in formulating a mathematical model of mother-child attachment centre
on understanding how these parameter values are determined and what influences could
change them, leading to improvements in the long term development of the child.

Let us assume that while the parameters (a, b, m, Ā, · · · ) may be treated as being fixed
over the course a short period, e.g. the length of the strange situation experiment, they can
change over sufficiently long times, say over the course of a month. Let τ = εt represent
a slow timescale, where ε is a small parameter. If time is measured in minutes, then for
example, ε could be one over the number of minutes in a month, ε ≈ 1/43, 200 ≈ 2×10−5. If
we assume that the parameters, e.g., a, vary only over the course of months, then a = a(τ),
where a(τ) is assumed to be a smooth function, whose value would essentially be unchanged
over a short period of time, i.e., a(τ +60×10−5) ≈ a(τ). However, given an extended period
over which the mother’s response to her child has changed, e.g. due to some intervention,
these parameters should evolve in response.

However, it may be useful to assume that the parameter ρ, which appears in the damping
term of the nonlinear anxiety model (3.6), varies on intermediate time scales. That is, it
can be assumed to be approximately constant on time scales of a single anxious event,
e.g. one exit and return of the mother in the strange situation experiment, but that it
may vary over the course of several consecutive anxious events, e.g. over the course of
the entire experiment. In the strange situation experiment, it has been observed that the
mother’s ability to regulate the anxiety of the child decreases as the number of absences of
the mother increases. Thus, if we assume that, for instance, the parameter ρ is proportional
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to a windowed time-average of the anxiety A over an interval [t− δt, t] i.e,

ρ = ρs

∫ t

t−δt
(A− Ā)dt, (3.14)

where ρs is a constant, then ρ will increase each time the mother leaves the room. The
increase in ρ will lead to a slower decay of anxiety. As this rate of decay increases, the child’s
responses will appear more and more like those of an ambivalent child. See Figure 12. This
is consistent with the observation that given several absences of the mother, all children
display characteristics of an ambivalent child.
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Figure 12 Numerical simulations of the full system with general damping term (i.e. ρ 6=
0) as the mother returns to the room. We take ρ = 20, while the other parameter values
are taken to be the same as those used for Figure 10.

Furthermore, the parameter ρ appears in the damping term multiplied by A2. Thus,
the damping increases as A increases, leading to the realistic situation that the higher the
child’s anxiety, the more difficult it is to regulate.

3.6 Discussion. The model presented in Section 3 describes the dynamics observed
during the strange situation experiment. In particular, using two variables, anxiety A and
emotional distance r, the model has the capacity to distinguish between the three types
of mother-child interactions observed in the experiment: secure, ambivalent and avoidant.
Moreover, the distinction is achieved by varying only two parameters that are directly linked
with the mother’s parenting style: the mother’s insensitivity b and the inconsistency a in
her response to her child’s needs. In the construction of the model, we chose reasonable rep-
resentations of how the characteristics associated with these parameters affect the mother’s
ability to regulate her child’s anxiety. The fact that the variation of these two parameters
leads to the qualitative distinction of the attachment types supports the claim that these
are indeed the most important factors in the problem.

However, at this stage, the model is only phenomenological. The next stage in the model
development will be to incorporate quantitative information. In order to do this, we need
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to find reasonable units for the variables and parameters, and we need to approximate the
values of the parameters. In some cases it will likely be necessary to design new experiments
specifically for this purpose. We also need to acquire quantitative data sets that provide
continuous readings of the model variables throughout an experiment. Anxiety A has been
measured using levels of cortisol in the child’s saliva. However, existing data sets only
include measurements at a few points during an experiment. It may be practical to use
heart rate as a measure of anxiety, because it is a quantity that is relatively easy to monitor
continuously.

Similarly, data for the emotional distance r is needed. However, before such data
can be acquired, it must be determined whether it can be defined in terms of directly
measurable quantities such as physical distance, and frequency of visual contact or verbal
communication.

The model also contains other parameters, namely “emotional inertia” m, in analogy to
Newtonian inertia in the second-order equation describing anxiety, and “curiosity” c, in the
equation for emotional distance. At present, we only have a vague concept of the significance
of these parameters and it would be interesting to find precise psychological concepts relating
to these parameters. This would be particularly significant if those concepts could be
quantifiable. By performing various numerical simulations of (3.10), we have found that
the qualitative behaviour of the model is not sensitive to these parameters. However, it
would be interesting to quantify the model’s dependence on these parameters.

4 Control Theory Approach

(This section contributed by Roger Chau).
In this section, we present an outline of how one might take a control theory approach

to the problem of mother-child attachment. In particular, a feedback system is proposed
to model the interaction between mother and child during stressful situations. The child’s
perception of the mother’s parenting style is modelled using the Preisach model [14], which
is commonly used in modelling shape memory alloys (SMAs).

4.1 Feedback System. Consider the feedback system shown in Figure 13. (For back-
ground in control theory and feedback systems, please refer to [17]). The system represents
the child, whereas the controller, or regulator, models the relationship between the mother
and the child. The input disturbance s is the external stress that the child experiences
when certain events occur. The reference signal r is the baseline stress level of the child.

Figure 13 The feedback system
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We will first look at the system representing the child; Figure 14 shows the components
that make up our simple child. We take the input u to the system to be the external stress
modulated by the regulator, which represents the relationship of the child with her mother,
and we take the output y to be the stress level of the child. In the absence of the mother,
the child will amplify the stress received. This is modelled by a gain of k1 which is the
same for every child. In addition, an integrator with gain k2 is used to model the effect of
accumulated stress on the child’s stress level.

Figure 14 The system representing the child.

The second component of our feedback system is the regulator; see Figure 15. A
Proportional-Integral-Differential (PID) controller is used to model the child’s relationship
with the mother. Note that it takes in the difference between the baseline stress level r and
the actual stress level of the child y. The regulators job is to reduce this difference or error
by changing the input to the system. In essence, the proportional gain kp deals with the
present, the integral gain ki deals with the past, and the differential gain kd attempts to
predict the future. The proportional gain kp is assumed to be a random value, because in
any given situation, the mother’s ability to down-regulate the child’s anxiety will vary. The
integral gain ki depends on the ‘healthiness’ of the child’s relationship with the mother. If
the mother has a healthy relationship with her child, it is easier for her to reduce accu-
mulated stress. Finally, the differential gain kd depends on the consistency of the mother’s
parenting style. This has to do with the child’s expectation of the mother’s behaviour when
a stressful situation occurs. Note that the values of these gains may be positive or negative,
depending on the child’s experience with the mother.

4.2 Preisach Model. While the implementation of the above model seems to be
straightforward, it is not clear how some of the parameter values can be determined. Be-
cause we are mainly interested in qualitative results, the values of k1 and k2 may be taken
as unity, and the baseline stress level may be taken as zero. Two parameters that depend
on the mother’s parenting style are ki and kd. These parameters are similar to those used
in the other models in this report, and therefore, it is useful to propose a method to derive
them. The following is a description of the Preisach model, which is commonly used to
model systems with memory.

In [10], a method for mapping human emotions as a continuous surface is proposed.
Here, we will follow a similar approach, this time making use of the Preisach model. Consider
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Figure 15 The regulator representing the child’s relationship with her mother

Figure 16 A simple relay

modelling a single emotion with a simple relay as in Figure 16. The input of the relay is the
perception or rating of the mother in the child’s point of view. The relay has two outputs:
+1 corresponding to good and -1 corresponding to bad. Each relay is categorized by the
centre s and the half width r > 0.

A relay is used because for a particular emotion to change from one state to another
might require different amount of influence. For example, if person A is originally unhappy,
then it will take a lot of effort to make A happy; similarly, if A is happy, a lot more bad
influence is needed to make A unhappy again. Each relay can be uniquely identified by the
pair of parameters (r, s), or as ordered pairs in the plane R+ × R. We can set an arbitrary
limit on the maximum magnitude of the input. This is possible due to that fact that after
a certain threshold, little effects can be observed if we change the input. This restricted
domain is the Preisach Plane P shown in Figure 17.

The goal of using the Preisach model is to find a way to quantify the values of ki and
kd. The output p of the Preisach model can be used to determine the value of ki. In order
to determine kd, we can keep track of the number of sign changes of the output y over a
fixed period of time. There are several programs written for the Preisach model and the
PID controller is trivial to implement using, for example, MATLAB.
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Figure 17 Preisach Plane

5 Summary

In this report, we present three mathematical models relevant to the attachment of
a child with her mother. In the first, we approached the problem from a game theory
perspective. We find that a simple decision-making process can lead to three distinct
attachment types.

In the second model, we present a dynamical system that exhibits various behaviour
similar to what might be expected from the three distinct attachment types. We also find
that the model parameters that determine the qualitative character of the response are asso-
ciated with the mother’s sensitivity and consistency. In this report, we have only presented
qualitative results, and have left some important questions regarding model validation and
quantitative predictions unanswered. This will be a subject of future research.

Finally, we present a sketch of a model in control theory. This approach is intriguing,
owing to the fact that some of the original results on attachment theory were described in
such terms. However, much more work must be done in order to determine whether this
model would yield fruitful results.
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1 Introduction

A multi-objective optimization typically arises in various engineering modelling prob-
lems, financial applications, and other problems where the decision maker chooses among
several competing objectives to satisfy (see, e.g. [5]). In this report we consider a multi-
objective optimization problem that comes from the financial sector. However, the analysis
is applicable to any problem that retains similar characteristics. In particular, we focus on
techniques for the normalization of objective functions. The normalization plays an impor-
tant role in ensuring the consistency of optimal solutions with the preferences expressed
by the decision maker. We also compare several approaches to solve the problem assuming
that a linear or a mixed integer programming solver, such as CPLEX, is available. Namely,
we consider weighted sum and hierarchical or ε-constraint methods, see also [1, 3, 6].

Although this report tends to provide a general discussion about multi-objective opti-
mization, the proposed analysis and the resulting algorithm are specifically aimed at prac-
tical implementation. The reader should keep in mind that different approaches may be
more effective should one not be constrained by various factors that are induced by the
environment, and that are not discussed within the scope of this paper.

A multi-objective optimization problem can be written in the following form

min {f1(x), f2(x), . . . , fk(x)}
s.t x ∈ Ω,

(1.1)
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where fi : Rn → R are (possibly) conflicting objective functions and Ω ⊆ Rn is the feasible
region.

For consistency, we transform all the maximization problems of the type max fi into
equivalent minimization problems min(−fi).

The goal of multi-objective optimization is to simultaneously minimize all of the objec-
tive functions. In this paper we restrict our attention mainly to the case of convex objectives
and convex feasible region. The situation when integrality restrictions are present is also
briefly addressed. We further consider only linear or convex quadratic objectives and con-
straints. In general we distinguish among the following three types of problems:

• linear – with linear objectives and constraints;
• quadratic – with linear and quadratic objectives, but only linear constraints;
• quadratic-quadratic – with both objectives and constraints being either linear or

quadratic.
Define the set Z ⊆ Rk as the mapping of the feasible region into the objective space

and denote it as objective feasible region:

Z = {z ∈ Rk : z = ((f1(x), f2(x), . . . , fm(x))T ∀x ∈ Ω)}.
Since we assume that objective functions compete (or conflict) with each other, it is

possible that there is no unique solution that optimizes all objectives simultaneously. Indeed,
in most cases there are infinitely many optimal solutions. An optimal solution in the multi-
objective optimization context is a solution where there exists no other feasible solution
that improves the value of at least one objective function without deteriorating any other
objective.

This is the notion of Pareto optimality [1, 2, 4, 5, 6]. Specifically, a decision vector x∗ ∈ Ω
is Pareto optimal if there exists no another x ∈ Ω such that fi(x) ≤ fi(x∗) ∀i = 1, . . . , k and
fj(x) < fj(x∗) for at least one index j. The vector of objective function values is Pareto
optimal if the corresponding decision vector x is Pareto optimal. The set of Pareto optimal
solutions P forms a Pareto optimal set, which is also known as the efficient frontier, see [4].

The definition above refers to global Pareto optimality. In addition, local Pareto optimal
solutions can be defined if points in the neighbourhood of an optimal solution are considered
(rather than considering all points in the feasible region). Any global Pareto optimal solution
is locally Pareto optimal. The converse is true for problems which feature convex Pareto set.
More specifically, if the feasible region is convex and objective functions are quasi-convex
with at least one strictly quasi-convex function, then locally Pareto optimal solutions are
also globally Pareto optimal, see [6].

2 Decision making with multi-objective optimization

From the mathematical point of view, every Pareto optimal solution is equally accept-
able as the solution to the multi-objective optimization problem. However, for practical
reasons only one solution shall be chosen at the end. Picking a desirable point out of the set
of Pareto optimal solutions involves a decision maker (DM). The DM is a person who has
insights into the problem and who is able to express preference relations between different
solutions. In the case of Algorithmics Inc., the DM is the customer running their software.

A process of solving a multi-objective optimization problem typically involves the co-
operation between a decision maker and an analyst. The analyst in our situation is repre-
sented by a piece of software that is responsible for performing mathematical computations
required during the solution process. This analytical software generates information for
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the decision maker to consider and assists in the selection of a solution by incorporating
preferences expressed by the DM. For example, the DM can assign importance levels, such
as ”high”, ”medium”, or ”low”, to each objective or rank objectives in some specific order.

In the context of this report we seek to find a solution that is both Pareto optimal
and also satisfies the decision maker. Such a solution, providing one exists, is considered
a desired solution to the multi-objective optimization problem and is denoted as a final
solution.

3 Numerical example

A small portfolio optimization problem is used to test and to illustrate the multi-
objective optimization methodology. In portfolio optimization, investors need to determine
what fraction of their wealth to invest in which stock in order to maximize the total return
and minimize the total risk. In our experiments, the data includes expected returns, return
covariances and betas for 8 securities, as well as their weights in the initial portfolio x0. If
we define our decision variables to be the weights of the securities x then expected return
rT x and beta βT x are linear functions and variance of return 1

2xT Qx is a quadratic function.
We put box constraints on the weights x (0 ≤ x ≤ 0.3) and use three objectives:
1) minimize the variance of return;
2) maximize the expected return;
3) set a target beta of 0.5 and penalize any deviation from this target.

Moreover, we also need to add a constraint that makes the weights sum to 1. The data for
the problem is presented in Tables 1 and 2.

Security x0 E(Return) Beta
1 0 0.07813636 0.1
2 0.44 0.09290909 0
3 0.18 0.11977273 0.7
4 0 0.12363636 0.5
5 0 0.12131818 0.3
6 0.18 0.09177273 0.25
7 0.13 0.14122727 0.4
8 0.07 0.12895455 -0.1
Table 1 Portfolio data

Security 1 2 3 4 5 6 7 8

1 0.000885 -8.09E-05 9.99E-05 5.80E-05 -0.000306 0.000261 -0.001255 0.000803

2 -8.09E-05 0.022099 0.010816 0.010107 0.011279 0.010949 0.010534 -0.013429

3 9.99E-05 0.010816 0.026997 0.028313 0.031407 0.007148 0.020931 -0.017697

4 5.80E-05 0.010107 0.028313 0.030462 0.035397 0.006782 0.022050 -0.015856

5 -0.000306 0.011279 0.031407 0.035397 0.047733 0.007278 0.023372 -0.015692

6 0.000261 0.010949 0.007148 0.006782 0.007278 0.006194 0.004195 -0.010970

7 -0.001255 0.010534 0.020931 0.022050 0.023372 0.004195 0.052903 -0.013395

8 0.000803 -0.013429 -0.017697 -0.015856 -0.015692 -0.010970 -0.013395 0.121308

Table 2 Return Covariances Matrix
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Thus, the multi-objective portfolio optimization problem looks like:

min f1(x) = −rT x, f2(x) = |βT x− 0.5|, f3(x) = 1
2xT Qx

s.t
∑

i xi = 1,
0 ≤ xi ≤ 0.3 ∀i.

Let us rewrite the beta constraint as βT x+t1−t2 = 0.5, in this case f2(x) = t1+t2, t1 ≥
0, t2 ≥ 0. We get the following problem:

min
x,t

f1(x, t) = −rT x, f2(x, t) = t1 + t2, f3(x, t) = 1
2xT Qx

s.t
∑

i xi = 1,
βT x + t1 − t2 = 0.5,
0 ≤ x ≤ 0.3, t ≥ 0.

(3.1)

Suppose that (
f1(x∗), f2(x∗), f3(x∗)

)
= (−12, 0.1, 26)

and (
f1(x′), f2(x′), f3(x′)

)
= (−5, 0.1, 15)

are both Pareto optimal solutions. If the DM prefers the first objective over the third,
then the DM may prefer solution x′, whereas he may prefer x∗ if the opposite scenario
holds. The challenge in this multi-objective portfolio optimization problem is to find the
Pareto optimal point that meets the DM’s given preferences. We propose to focus on two
approaches: the weighted sum approach outlined in Section 4 and the hierarchical approach
discussed in Section 5.

4 The weighted sum method

The weighted sum method allows the multi-objective optimization problem to be cast
as a single-objective mathematical optimization problem. This single objective function is
constructed as a sum of objective functions fi multiplied by weighting coefficients wi, hence
the name. These coefficients can be normalized to 1, while this is not necessary in general.

4.1 Basics of the weighted sum method. In the weighted sum method the problem
(1.1) is reformulated as:

min
k∑

i=1

wifi(x)

s.t x ∈ Ω,

(4.1)

where wi ≥ 0, ∀i = 1, . . . , k and
∑k

i=1 wi = 1.
Under the convexity assumptions, the solution to (4.1) is Pareto optimal if wi > 0, ∀i =

1, . . . , k. The solution is also unique if the problem is strictly convex.
In principle, every Pareto optimal solution can be found as a solution to (4.1), if con-

vexity holds. However, as we will see in Section 4.4, depending on the problem geometry
and the solution method some of the Pareto optimal solutions can never be obtained.
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4.2 Normalization in the weighted sum method. Ideally, weights of each objec-
tive function are assigned by the DM based on the intrinsic knowledge of the problem.
However, as different objective functions can have different magnitude, the normalization
of objectives is required to get a Pareto optimal solution consistent with the weights as-
signed by the DM. Hence, the weights are computed as wi = uiθi, where ui are the weights
assigned by the DM and θi are the normalization factors.

Some possible normalization schemas are:

• normalize by the magnitude of the objective function at the initial point x0, here
θi = 1

fi(x0) ;

• normalize by the minimum of the objective functions, θi = 1
fi(x[i])

, where x[i] solves
minx{fi(x) : x ∈ Ω};

• normalize by the differences of optimal function values in the Nadir and Utopia points
that give us the length of the intervals where the optimal objective functions vary
within the Pareto optimal set (details are provided below).

The first two schemas have proved to be ineffective and are not practical. The ini-
tial point may provide very poor representation of the function behaviour at optimality.
Moreover, fi(x0) is often equal to zero and can not be used at all. Use of the optimal
solutions to individual problems can also lead to very distorted scaling since optimal values
by themselves are in no way related to the geometry of the Pareto set.

Let us consider the last normalization schema in more details. It is not difficult to see
that ranges of the objective Pareto optimal set provide valuable information for the solution
process. The components z∗i = fi(x[i]) ∈ R of the ideal objective vector z∗ ∈ Rk are obtained
by minimizing each of the objective functions individually subject to the original constraints,
i.e.,

z∗i = fi(x[i]) where z∗i = argminx{fi(x) : x ∈ Ω}.

The ideal objective vector zU = z∗, called the Utopia point, is not normally feasible
because of the conflicting nature of the individual objectives. The Utopia point provides
the lower bounds of the Pareto optimal set.

The upper bounds of the Pareto optimal set are obtained from the components of a
Nadir point zN . These are defined as

zN
i = max

1≤j≤k
(fi(x[j])), ∀i = 1, . . . , k.

The normalization schema that uses the differences of optimal function values in the
Nadir and Utopia points gives the following values of θi,

θi =
1

zN
i − zU

i

.

This normalization schema provides the best normalization results as we normalize the
objective functions by the true intervals of their variation over the Pareto optimal set.
Intuitively, it is not difficult to see that all objective functions after normalization will be
bounded by

0 ≤ fi(x)− zU
i

zN
i − zU

i

≤ 1,

that gives the same magnitude to each objective function.
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4.3 Computing normalization weights. In order to compute true normalization
ranges zN

i − zU
i it is necessary to solve k optimization problems of the form minx{fi(x) :

x ∈ Ω} to obtain x[i] values.
Knowing x[i] is crucial, as they are required to calculate zU

i = fi(x[i]) and zN
i =

maxj(fi(x[j])).
In practise, it may be computationally expensive to solve k optimization problems if

they are mixed integer programming problems or quadratically constrained problems. Even
solving k linear or convex quadratic problems can take a significant amount of time if the
problem dimensions are large (more than 10,000-100,000 variables/constraints).

On the other hand, it is evident that exact solutions to the individual optimization
problems are not required. One can come up with acceptable normalization factors if the
estimates of the Utopia and Nadir points are known. For that reason, we propose the
following relaxations or modifications to cope with the expensive computational costs.

• Tweak CPLEX parameters to reduce the solution time, i.e. increase one or more of
the stopping criteria tolerances, e.g. increase the duality gap in the barrier solver
from 10−6 to 10−3 or 10−4.

• Relax some of or all ”difficult” constraints, i.e. relax all quadratic and integer con-
straints.

• Estimate zU
i and zN

i without solving any optimization problem, by relying instead
on a random sampling of points x subject to a subset of problem constraints Ω (such
as, for example, box-constraints li ≤ xi ≤ ui). Calculate zU

i and zN
i as the minimum

and the maximum over the set of sampled points.
• If known, use the initial solution x0 for normalization when all other methods are

still computationally expensive.
• In certain cases, there is a closed form solution for zU

i . For example, in Problem
(3.1), zU

i = −0.3(r(1) + r(2) + r(3))− 0.1r(4) where r(i) is the ith order statistic of ri
2.

The corresponding solution is x(1) = 0.3, x(2) = 0.3, x(3) = 0.3, x(4) = 0, and all other
xi = 0, which can be used to find zN

i .
This result is due to the fact that the constraints in the problem define the

standard simplex.
Similarly, zU

2 = 0.5 − β(1), if β(1) < 0.5 (and the corresponding optimal solution
will be x(1) = 1 and xi = 0,∀i 6= (1)), zU

2 = β(8) − 0.5, if β(8) > 0.5 (and the
corresponding optimal solution will be x(8) = 1 and xi = 0,∀i 6= (8)), and zU

2 = 0
otherwise (in this case, if βk ≤ 0.5 ≤ βj , then xj = 0.5−βk

βj−βk
, xk = βj−0.5

βj−βk
and xi =

0,∀i 6= j, k.) Clearly, there can be multiple optimal solutions.

4.4 Weaknesses of the weighted sum method. The weighted sum method has
a major weakness when objectives are linear and a simplex-type method is used to solve
the weighted sum problem. As we noted earlier, the specific Pareto optimal solution can
be obtained by the proper choice of weights. However, if the objective Pareto optimal
set features a linear face, the simplex method will always pick up a vertex as the possible
solution. There does not exist a set of weights that yield points in the interior of the linear
face as long as the simplex method is considered. Different solution techniques, such as
interior-point methods, may overcome this disadvantage.

2The ith order statistic of ri is the ith largest value in {r1, . . . , rn}, i.e., r(1) ≥ r(2) ≥ · · · ≥ r(n).
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Figure 1 Objective Feasible Region: Linear Case

In order to better understand this situation, let us consider a small example with two
linear objective functions subject to a polyhedral feasible region,

min {w1(3x1 + x2), w2(−2x1 + x2)}
s.t x1 + x2 ≤ 17,

5 ≤ x1 ≤ 10,
5 ≤ x2 ≤ 10.

Figure 1 displays the objective feasible region Z (shaded polyhedron) for this problem.
It also shows Utopia zU and Nadir zN points, as well as the Pareto efficient frontier P.

Solving the above problem with the simplex-type algorithm yields an optimal solution
which is either one of two points (zN

1 , zU
2 ) or (zU

1 , zN
2 ). The choice of weights defines which

one will be obtained, and the jump occurs for some values w1 and w2 which depend on the
tangency ratio w1

w2
. However, it is not possible to escape these corner solutions, as no other

point in the Pareto set can be obtained as a solution of the weighted sum problem.
This deficiency of the weighted sum method can seriously puzzle the decision maker as

the results obtained by the analytical software may be not in line with his or her expecta-
tions. In fact, the following anomalies may be observed:

• sensitivity issues – an optimal solution experiences huge jumps when weights are
changed slightly, but at the time is unaffected by broad changes in weights;

• optimality issues – optimal solutions are corner solutions on the Pareto optimal set,
which usually are not practically desirable solutions.

These shortcomings are especially evident if we have only linear objective functions
that yield an objective feasible region like the one in Figure 1. If objective functions are all
quadratic these problems may not be encountered, since the efficient frontier is likely to be
non-linear as in Figure 2.

One way to overcome the linearity of a Pareto face is to square some of the linear
objective functions and to keep the quadratic ones. To understand this idea we look at
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Figure 2 Objective Feasible Region: Non-Linear Case
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Figure 3 Pareto Optimal Set: Illustrative Portfolio Problem

the illustrative portfolio problem (3.1). In that problem the objective functions f1 and
f2 are linear, while f3 is quadratic. Figure 3 shows the Pareto optimal set in the (f1, f2)
plane. Squares denote the corners of the set, i.e. solutions we can possibly obtain with the
weighted sum approach.

We can square the objective function f2 since

min f2(x) = min |βT x− 0.5| = min f2
2 (x) = min(βT x− 0.5)2.

Using f2
2 (x) instead of f2(x) and keeping f1, f3 as before, we come up with a more populated

Pareto set, as depicted in Figure 4.
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Figure 4 Pareto Optimal Set: Squared Linear Function f2

Clearly, we cannot square all linear objective functions as squaring some of them may
make no sense for the original multi-objective problem formulation. The above discussion
illustrates that reformulating the problem may sometimes help in overcoming the weaknesses
of the weighted sum method, while keeping the complexity roughly the same.

Another approach that does not suffer from problems experienced by the weighted sum
method is the hierarchical (ε-constraint) method, described in the next section.

5 The hierarchical method

This method allows the decision maker to rank the objective functions in a descending
order of importance, from 1 to k. Each objective function is then minimized individually
subject to a set of additional constraints that do not allow the values of each of the higher
ranked functions to exceed a prescribed fraction of their optimal values obtained on the
corresponding steps.

In other words, once the optimal value for the specific objective has been obtained, the
possible values this objective function can take on the following steps are restricted to a
box (or a ball) around this optimal solution. Depending on the size of the restriction this
strategy effectively puts more weight on the higher ranked objective functions.

5.1 Basics of the hierarchical method. For illustration purposes, we consider the
problem with two objective functions. Suppose that f2 has higher rank than f1. We then
solve,

min f2

s.t x ∈ Ω
to find the optimal objective value f∗2 .

Next we solve the problem,

min f1

s.t x ∈ Ω,
f2(x) ≤ f∗2 + ε.
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Figure 5 Objective Feasible Region: The Hierarchical Method Cut

Intuitively, the hierarchical method can be thought as saying ”f2 is more important
than f1 and we do not want to sacrifice more than 20% (or 30% or 50%) of the optimal
value of f2 to improve f1.”

In the general case of k objective functions and the strict preferential ranking f1, f2,
. . ., fk, we start by solving the problem

min f1

s.t x ∈ Ω,

to obtain the optimal solution x[1]. Next, for j = 2, . . . , k, we find the optimal solution x[j]

for the j-th objective function by solving the problem with additional constraints of the
following form

fl(x) ≤ (1 + εl)fl(x[l]), ∀l = 1, . . . , j − 1.

If both Utopia and Nadir points are known, we can interpret εl as the distance from
optimality in percents,

fl(x) ≤
(
1 + εl(zN

l − zU
l )

)
fl(x[l]).

5.2 Application of the hierarchical method. The hierarchical method provides
the decision maker with another way to specify the relative importance of the objective
functions: instead of weighting each of them, the DM ranks them and specifies how much
of the more important objectives can be traded in order to improve the less important ones.

The hierarchical method avoids the pitfalls of the weighted sum method as it starts with
the corner solution and attempts to move away towards the centre of the Pareto set.

Figure 5 shows that the constraint f2(x) ≤ (1+ε2)f2(x[2]) introduces the cut that forces
the optimal solution to move out of the corner.

One of the drawbacks of the hierarchical method is the introduction of a quadratic con-
straint on subsequent steps when the previous problem has a quadratic objective function.
Quadratic constraints are generally very hard to deal with and, thus, should be avoided.
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However, as we already discussed in Section 4.4, the problem with purely quadratic objec-
tives usually features non-linear efficient frontier and can be tackled by the weighted sum
approach. This leads us to the following proposition:

1) if linear objective functions are present, rank and apply the hierarchical method to
eliminate them from the problem, i.e. replace these functions with the corresponding
cuts;

2) use the weighted sum method to solve the remaining problem where only quadratic
objectives are present.

These ideas are key to the algorithm we present in the next section.

6 The algorithm

We propose the following algorithm to solve the general convex multi-objective optimiza-
tion problem with linear and quadratic objectives. The algorithm combines both weighted
sum and hierarchical approaches and requires only linear or quadratic programs to be solved
at each step.

1. Separate linear and quadratic objectives into two index sets L and Q, denote linear
objectives as fL and quadratic objectives as fQ.

2. Rank the linear objective functions in L from the most important to the least im-
portant.

3. Solve (or approximate if possible) each of

min
x
{fi(x) : x ∈ Ω}.

Let x∗i denote an optimal solution and f∗i be the optimal objective value. Compute
the Nadir vector zN .

4. Sequentially solve problems

min fL
i

s.t x ∈ Ω,
fL

l (x) ≤ fL∗
l + δl, l = 1, . . . , i− 1,

δl = εl(zN
l − fL∗

l ).

One may also consider updating elements of zN by considering optimal solutions to
these problems, as they become available.

5. If no quadratic objectives are present, return the last optimal solution as the final
solution; otherwise proceed to the next step.

6. Compute scaling coefficients θi for objectives in Q and set wi = uiθi, where ui are
the decision maker preferences.

7. Solve for the final solution

x∗ = argminx

{∑
q∈Q

wqf
Q
q : x ∈ Ω, fL

l ≤ fL∗
l + δl,∀l ∈ L

}
.

6.1 Choosing weights based on the geometrical information. In the fourth step
of the algorithm, we aim to solve the sequential program Pi = {min fL

i : x ∈ Ω, fL
l (x) ≤

fL∗
l + εl(zN

l − fL∗
l ), l = 1, . . . , i− 1} to get the optimal value fL∗

i . Each time we obtain an
optimal objective value fL∗

i , the constraint

fL
i (x) ≤ fL∗

i + εi(zN
i − fL∗

i )
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is added in succeeding programs to cut off a portion of the feasible region where the i-th
objective can’t be well achieved. A challenging problem is to decide the proportion we want

to cut off. If we choose a small εi, we may overly favour the i-th objective (
fi(x∗)− f∗i

zU
i − f∗i

≤ εi),

while sacrificing subsequent objectives; in contrast, choosing a large εi may result in a poor
i-th objective, but leaves more space to optimize other objectives. In the multi-objective
optimization it is important to develop a fair and systematic methodology to decide on εi

according to the given information.
The choice of εi should depend on the importance of objective fL

i and the potential
conflict between objective fL

i and other objectives. The importance of fL
i could be repre-

sented by the priority factor ui, which is scaled to satisfy
∑

i ui = 1. However, there is no
explicit indicator measuring the conflicts among different objectives.

We are motivated to measure the conflict based on the geometry of the objective func-
tions. In the second step of the algorithm, we have computed x∗i ∈ Rn for each objective
i. Next, a reasonable choice of the centre is the bycentre xC = 1

n

∑
i x

∗
i . Clearly, there are

many choices of the centre, e.g. the analytical centre of the polyhedral feasible set. But the
bycentre of x∗i , i = 1, 2, . . . , k is the easiest to compute.

We propose a metric for the conflict between objectives i and j. Let us call it the conflict
indicator, denoted by cij . We first measure the cosine value of the angle θij between the
vectors from x∗i − xC and x∗j − xC :

cos θij =
< x∗i − xC , x∗j − xC >

‖x∗i − xC‖‖x∗j − xC‖
.

As discussed above, xC denotes the point we set to approximate the centre of the feasible
set. We define cij as

cij =
1
2
(1− cos θij).

Thus, the larger the angle between the two objectives, the bigger the conflict indicator cij

is. The conflict indicator equals zero when the optimizer of the two objectives coincides;
and it is close to one when the two objectives tend to conflict the most. Note that cii = 0.

We propose to set εi = α
∑k

j=1 ujcij , where α is some scalar factor which could be
decided by numerical experiment. The weighted sum has two significance: if important
objectives conflict with the i-th objective, i.e. they have high priority, then we do not
want to impose strict constraints on the achievement of objective fL

i because it tends to
restrict the important objectives, and thus we select big ε. On the other hand, if objectives
conflicting with i-th objective are all of low priority, even if there are many conflicts, we
can still impose a small ε to the objectives. If i-th objective has a high priority ui, then the
weighted sum of conflict indicators tends to be low.

Writing it mathematically, we denote by u the vector of priority factors:

u = {u1, u2, . . . , uk}T ,

and let X ∈ Rn,k be
X := {x∗1, x∗2, . . . , x∗k}.

Then, we get a vector ε = (E − XT X)u, which carries εj for each objective j. We
could choose to compute ε once in the beginning or update x∗j after each iteration of the
sequential program and use this information to compute ε.
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This technique could be generalized to the quadratic constraints, quadratic objective
case (QCQP). For this case, if all quadratic constraints are convex, we could linearize the
functions by replacing non-negative constraints with positive semi-definite constraints. This
will result in a semi-definite programming problem to compute x∗j , define the bycentre, and
then compute conflict indicators cij . Thus, we can solve the sequential QCQP program and
compute ε as one problem.

7 Conclusions and future work

We have reviewed multi-objective optimization problems and normalization methods
– weighted sum and hierarchical approaches. Both methods are analyzed and their ad-
vantages, as well as disadvantages, are discussed. Based on the analysis, we propose an
algorithm to solve convex multi-objective problems with linear and quadratic objectives. A
version of the algorithm was implemented in MATLAB and tested on the financial problem
discussed in Section 3.

This paper provides a lot of insight on how to attack and what to expect from these
kinds of problems. We accept the fact that analysis is rather sketchy, but we feel that the
algorithmic approach and, especially, ideas expressed in Section 6.1 may be innovative and
of further interest. Since we did not have time to perform an extensive literature review,
we should stress that these or related ideas might be already known or better developed
elsewhere. We encourage an interested reader to consult numerous publications on multi-
objective optimization.
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Arino, Julien University of Manitoba
Aruliah, Dhavide University of Ontario Institute of Technology
Baddour, Natalie University of Ottawa
Bohun, Sean University of Ontario Institute of Technology
Bowman, Christopher National Research Council
Breward, Chris Mathematical Institute, University of Oxford
Buono, Luciano University of Ontario Institute of Technology
Chau, Roger University of Waterloo
Cottrell, David McGill University
Craig, Walter McMaster University
Cumberbatch, Ellis Claremont Graduate University
Ding, Yichuan University of Waterloo
Djoumna, George Université de Laval
ElSheikh, Ahmed McMaster University
Fan, Guangzhe University of Waterloo
Ghobeity, Amin University of Toronto
Gordon, Richard University of Manitoba
Gregov, Sandra McMaster University
Grodzevich, Oleg University of Waterloo
Gumel, Abba University of Manitoba
Gumel, Abba University of Manitoba
Halevy, Itamar
Hazaveh, Kamyar University of Toronto
Henda, Redhouane Laurentian University
Huang, Huaxiong York University
Jaimungal, Sebastian University of Toronto
Jiang, Xiamei University of Toronto
Kavazovic, Zanin GIREF - Université de Laval
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