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Plan of the lectures

Lecture 1. General introduction to
random matrix models.

Lecture 2. The Riemann-Hilbert
approach to the large N asymptotics
of orthogonal polynomials and ran-
dom matrix models. Scaling limits
and universality in the bulk of the
spectrum and at the end-points.

Lecture 3. Double scaling limits
and universality at critical points.

Lecture 4. Large N asymptotics of
the free energy of random matrix
models.



Lecture 1. General introduction to
random matrix models

e Unitary Ensemble of Random Matrices

J

matrix, Mkj = Mjk, with respect to the proba-

bility distribution

N L
Let M = <M'k)j,k=1 be a random Hermitian

un(dM) = Zyte NTH VD gpy, M= MT,
where
p .
V(M) — Z tija P = 2p07 tp > 0,
i=1
IS a polynomial,
N N
dM = ] dMj; || dRM,pdS My,
j=1 J7k

the Lebesgue measure, and
Iy :/ —NTr V(M) g,
Hnr

the partition function.



e Gaussian Unitary Ensemble (GUE)

For V(M) = M?,
N
Tr V(M) = Tr M?= Y My;Mj
J k=1

N
_ 2 2
= ) Mj+2) Myl
Jj=1 J>k
hence

N 2
unv(dM) = Zyt ] (e_Nijdej>
j=1

< TT (e 2V as gy ).
>k
so that the matrix elements are independent
Gaussian random variables. If V(M) is not
quadratic then the matrix elements are depen-
dent.



e Topological Large N EXxpansion

Free energy

A4
Fy=-N72mnZ%

ZN
fHN o~ NTr (M2 4+t3M34-t4 M) g0/

= —N"?In
fHN e—NTr (M?)qpg

— _N-2|n <€—NTI’ (ta M3+t M*+... )>
= —N"2In(1— NTr (taM3+t4M* +...)
1
N2 (133 taMP 4 )2 ).
where

fHNf(M)e_NTr M2dM
—NTr M2 pg1

(f(M)) =

fHNe



Topological expansion:

Fr~Fyg4+ N2F4+N4F+ ...

Expansion over Feynman diagrams:

Fj = Z fjmtm, t = (t3,ta,...),
m=(m3,ma,...)
where f;,, is (up to an explicit factor) the num-
ber of Feynman diagrams with m vertices on a
Riemannian surface of genus 5. Thus, F is a
generating function for fjm. It is used to find
asymptotics of fjm as m — oo.
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e Ensemble of Eigenvalues

N
pn(dN) = Zyt TT Oy — A2 H e V(A g,

1>k 1=1
where

N

Iy = / T\ = 202 [ e YV an,
1>k 1=1

d\=d\; ... d\y.

Main Problem: Find asymptotics of the par-
tition function and correlations between eigen-
values as N — oo.



Correlation Functions

The m-point correlation function is given as

K, n(z1,...,2m)
N
. (N — )1 /RN_mpN(:vl,...,xN)da:m_|_1...da:N,
where
N
pyn(zy,...,zNn) = Z&l H (CIZj—CIZk)Q H e~ NV(zj)

1>k 1=1



Determinantal formula for correlation func-
tions

Kpn(z1, .. 2m) = det (Qn(zg, 2)) =1 »

where

N-1
Qn(z,y) = ) ¥n(z)¥n(y)

n=0
and

1

n(z) = —=Pn(z)e NV (@)/2
/2

where Pn(z) = 2™ + a,,_12™ 1 4+ ... are monic
orthogonal polynomials,

/OO Pn(a:)Pm(a:)e_NV(x)da: = hndnm.

— 00
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Recurrence and differential equations for
orthogonal polynomials

rPp(z) = Pn+1(513) + BnPn(z) + %%Pn—l(x),

h 1/2

n

fyn:< > >O, ’7020
hn—l

or

rn () = 7n—|—1¢n—|—1(513) + Bnn(x) +mibp—1(x).
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Consider the complex Hilbert space H = L2(R1),

00 Jo
H=A{f(x)= > fivn(®)}, [f=|f1],
J=0 :
with the scalar product (f,g) = Z;?O:O fig;. Con-
sider the matrix Q of the operator of multipli-
cation by z, f(x) — xf(x) in the basis {yn(z)}.
Then @ is the symmetric tridiagonal Jacobi
matrix,

Bo v1 O

o= |m" B1 72
O 72 B3
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Christoffel-Darboux Formula

Calculation:
N—-1

(z — ) Z Un(@n(@) = Y |[(nt1¥n41(2)
n=0

+5n¢n(33) + Ynp— 1(33)) Yn(y)
~thn(@) (Tt 1%nt1®) + Brton(y) + mtbn—1())]
= [ YN (@)YN_1(y) —Yn_1(z)YN(Y)]

(telescopic sum), hence

N-1
Qn(z,y) = D ¥n(z)Pn(y)

n=0
_ . WN@)YN-1(y) — bn-1(2)¥N(Y)
YN R :
Density function:
p(a) = DD

— %V [¢fv($)¢N—1($) — ¢N—1($)¢N(a})] ‘
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Our goal is to derive semiclassical asymptotics
for ¢¥n(z) on the complex plane, as n, N — ¢
in such a way that

n
— —A>0
N—>

(for Christoffel-Darboux we need n = N, N—1).
There are three basic elements in the deriva-
tion:

1. String equations.
2. Lax pair equations.

3. Riemann-Hilbert problem.
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e String Equations

Let P = (Pam)pm=0,12,.. be a matrix of the
operator f(z) — f'(z) in the basis ¥n(z), n =

0,1,2,.... Then Py, = —FPym and
/ . NV/(Z) P (Z) —NV(Z)/Q
NV’
= (z)wn(z) + - wn 1(2) +.
hence
_ , _
P+ M@
- ) - nn
py NV(@ o
, 2 In,n+41
- , _
p 4 NVI(Q) _n
2 Inn—1 Tn

Since P, = 0, we obtain that

[V'(@)]nn = 0. (*)
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In addition,

oo [pi V@] [_ - +Nv'(cz>]
2 In—1.n 2 n,n—1
p 4 V(@) _n
I 2 nn—1 Tn
hence
WV ( @lnn-1 = - (%)

Thus, we have the discrete string equations,

([V/(@Q)]nn = 0,

\ Tm [V/(Q)]n,n—l —

n
N
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Example. Quartic model,

L
V(M) = M7+ MY

String equation,

n

T (t + 971 9+ g%%+1) =N

(Bn = 0 and the second string equation is triv-
ial in the case when V(M) is even). Initial
conditions: g = 0 and
©.@)
/ 2NV (2) 4,

— 00

71 — 0
/ e—NV(Z)dZ

— 00

M2
Gaussian model, V(M) = 5 t=1, g =0:
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e Computer solution of the string equation
for the quartic model: g=1,t= -1, N =
400

a 20 4[] Tl a0 o0 1200 140 10 180 200
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e Fix-point solution of the string equation:

2 _ n)
—R(—),
Tn (N

—t 4 /12 + 129 N
c — — .

R(\) = ,
(M) 69 2

e Period-2-solution of the string equation:

( n
R(= —2k+1
> (N)’ " t1
/Yn_< n
L(—), n = 2k,
\ N
—t 4+ 1\/t2 — 4g)
R\, L(\) = v I A< e

2qg ’
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e Lax Pair Equations

Define W, (2) = <¢¢f§'z()z)> :

Differential equation:

W, (2) = NAp(2)Wn(2), (*)

where
V) () ava(e)
An(z) = - V/(Z)
—YnVp—1(2) 5 + Ynun(z)

and

Un(Z) — [W(Qaz)]n,n—la

vn(z) = [W(Q, 2)]nn,
where

W(Qz) = D=,

Observe that Tr A,(z) = 0.
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Recurrence equation:

W4 1(2) = Un(2)Wn(2), (**)

where

Un(2) = (’77:41_1(? —Bn) — 7:81_1'771)

Thus, we have two equations on W, (2),

(U (2) = NAp(2)Un(2),

\'_}n—l—l(z) — Un(z)\'_}n(z)

\

The compatibility conditions of these two equa-
tions are the discrete string equations, so that
this is a Lax pair for the discrete string equa-
tions.
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Example. Quartic model,
t.o o, 9,4
V(M) =-M =M.
(M) = ZM2 + 5
Matrix An(z):
3
~ | +eR) e+ %] e+ 00

An(2) = 2 t 2 gz3
—n(92z° + 0p—-1) <§ + mn) z+ 5

where

On =t + g7 + 97741
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¢ Riemann-Hilbert Problem

Adjoint functions to ¥, (2),

NV (u)
NV(z) 1 [o© e 2 Yp(u) du
pn(z)=e 2 — [ ,

2m1 J—oc0o zZ— U

z € C.

Proposition 1. T he vector-valued function

Dp(z) = n(2) satisfies the Lax pair equa-
on—1(2)
tions,

{ B (2) = NAu(2)Bn(2),
Cl_Sn—l—l(z) — Un(Z)CBn(Z)
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Define

ent(z) = 1IIMm on(z), —oco<z < o0,
+3&2>0
T hen

n+(x) = on—(z) + ¢Yn(z).

Asymptotics of p,(z) as z — oo, z € C:

NV(z) 1 0o NV(w) O 4
o= P L (£ )
1/2
_ MW@ [(hyT g —n—2
— e 2 (27”;2 —|—O<z )

(due to the orthogonality, the first n terms can-
cel out).
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Psi-matrix;:

_ Wn(z) SOn(Z)
Wn(2) = (wn_l(@ gon_l(z>>

Lax pair:
Wn—l—l(z) = Un(2)Wn(z)
WKB asymptotic solution:
Wy(z2) = Vn(z)eN/\”(Z)
where Ap(z) = diag (\,1(2),\,2(2)). Then
—1 —1y,—1
N =V AV, — NV V.

In the leading order, A, = V,-1A4,V;, so that

A 1, Al > are eigenvalues of A,, and V, is the

matrix of eigenvectors of A,. Since Tr A,, = O,

Wi (2) = Vp(z)eNnl2)os,
where X\ (z) = \/— det A, (2).
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Riemann-Hilbert problem for W, (z):

e W, (z) is analytic on {&z > 0} and {&z < 0}
(two-valued on {3z = 0}).

o W, 1(2) =W, (2) <(1) i) , Sz=0.

©.@)

o W,(2) ~ (Z r}f) e~ (NV(2)/2—nIn z—I—)\n)a3’
k=0 ~

z — 00, Where ', k=0,1,2,..., are some

constant 2 x 2 matrices, with

(10
I_O_<O CTZ),

where Ay, and ¢, = 0 are some explicit con-
stants, and o3 is the Pauli matrix,

(1 0
3= 19 _1)-
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e Riemann-Hilbert Problem for Orthogonal
Polynomials

e Y, (z) is analytic on {3z > 0} and {3z < 0}
(two-valued on {3z = 0}).

e For any real z,
Vo (2) = Y (2) (é “’(f“’)>,

where w(z) = e~ NV (@),

e AS z — 00,

©.@)
Y\ (2" O
Yn(z) ~ (I+ > zk> (o z—n>
k=1
where Y., k= 1,2,..., are some constant
2 X 2 matrices.
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The RH problem has a unique solution

_( PG CwP)(@)
Yn(z) = (Cnpn_l(z) ch(an—l)(z)7>

where
P, d
P (z) = 51 [ Pl
xr — Z
and ¢, = —27r7;(7n_1)2. The recurrent coeffi-

cients can be found as

v2 = [Y1]o1[Y1l12,

[Y2]21

[Vilo1 SEEEE

Bn =

We will construct a semiclassical solution
(parametrix) to the RH problem in several steps.
The first step is based on the equilibrium mea-
sure for the function V(x).
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e Distribution of Eigenvalues and Equilib-
rium Measure

Rewrite the distribution of eigenvalues

N
duy(N) = 23t TT Oy = )2 TT e YV ay,,
>k j=1

as duy(\) = Zyte HN(g) where

N
Hy(O) == Y log A — Al + N 32 V)
i#k j=1

= N2 [— //m#y log |z — y|dvy(z)dvy(y)

+ [ V@) @)| = N1y ()

N
and dvy(z) = N71 Y 6(z — \j)dz.
j=1
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Thus,
duy(\) = Zyte NI gy,

We expect that for large N the measure du ()
is concentrated near the minimum of the func-
tional Iy, i.e. near the equilibrium measure
dv(x).

e Equilibrium Measure

Consider the minimization problem

EFy = inf L (v),
V=i v(v)
where
My (R ={ :/d :1}
1(R) v v
and

Iy (v) = —//Iog |s—t|dz/(s)dz/(t)—I—/V(t)dz/(t).

30



Proposition 2.2. The infinum of Iy (v)
achieved uniquely at an equilibrium measure
v = vy. [The measure vy IS supported by a
finite union of intervals, J = U;J':1[aj>bj]r and
on J it has the form

dv(z) = p(x)dz,

where

p(@) = S h@RY (@),

q
R(z) = ]] (& —a;)(z — b;).

J=1
Here R/2(x) is the branch with cuts on J,
which is positive for large positive x and R—I—/ ()

is the value of R/2(x) on the upper part of the
cut. The function h(x) is a polynomial, which

iIs the polynomial part of the function ‘f/gx(i)
at infinity, i.e.
V'(z) 1
— h(x) + O(x .

In particular, degh =degV — 1 —gq.
31



e A useful formula for the equilibrium den-
Sity

dvy(z) 1 <
dor _; Q(x)a

where

(V@ V(@) - V()
q(sc>—( > ) - ),
Reference

P. Deift, T. Kriecherbauer, and K. T-R McLaugh-
lin. New results on the equilibrium measure for
logarithmic potentials in the presence of an ex-
ternal field. J. Approx. Theory 95 (1998),
388—475.
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T he Euler-Lagrange variational conditions:
for some real constant [,

2/|09 lx —yldv(y) — V(x) =1, forx € J,

2/|09 lx —yldv(y) — V(x) <I, forc e R\ J

Definition. The equilibrium measure

V(dz) = %h(w)R_lI_/z(a;) d

is regular (otherwise singular) if
1. h(xz) #= 0 on the (closed) set J,

2. The inequality is strict,
2 / log |z — y|dv(y) — V(x) <, forx e R\ J.

Example. If V(z) is convex then v(dzx) is regu-
lar and the support of v(dx) consists of a single
interval.
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e Equations on the End-Points

Define

w(Z)zfjpiai)ix, ze C\ J

where du(x) = p(x)dx is the equilibrium mea-
sure. The Euler-Lagrange variational condi-
tion implies that

V(z)  h(z)RL/2(z)

2 2
Observe that as z — oo,

w(z) =

1 m
w(z) =——|——21—|—..., mk=/xkp(a:)da:.
zZ zZ J
The equation

V'(z) h(z)RY?(2) _ 1 2
> 2 =, ToE7).

gives ¢ + 1 equations on ajy,b1,...,aq,bq. Re-
maining g — 1 equations are

-
/bj“ h(z)RY?(2)de =0, j=1,...,q—1.

J
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Example. Quartic model,
t ~» 1 4
V(M) =-M —M™.
(M) = M>+

For t > t. = —2, the support of the equilib-
rium distribution consists of one interval [—a, a]
where

1/2
1/2
2t +2 <t2 + 12) /
a =
3
and
dvy(z) _ 1 (b n lxz) 2 .2
dx T 2
where
1/2
Lt ((t2/4) + 3) /
o 3
In particular, for t = —2,

d 1
vy (@) = —ac2\/ 4 — 22

dx 2T
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For t < —2, the support consists of two inter-
vals, [—a, —b] and [b,a], where

a=+vV2—t, b=+—-2-1¢,

and

dVV(x) i|x|\/(a 2)(332 o b2) .

e T he density function for t = -1, -2, —3.

0.8 0.8 0.8
0.6 t=-1 0.6 t=-2 0.6 t=-3
0.4 0.4 0.4
0.2 M 0.2 0.2
R 0 2 07, 0 2 R 0 2
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