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Definition 1 Lévy process. Let X(t) be a random variable
dependent on time t. Then the stochastic process

X(t), forO<t< oo and X(0) =0,

is a Léevy process iff it has independent and stationary increments.

Theorem 1 Lévy-Khintchine representation. Let X(t) be a
Lévy process. Then the natural logarithm of the characteristic
function can be written as

| . 1 . |
In E[ewX(ﬂ] = aith — 5021592 + t/ (ewx —1- 7,9331‘33|<1> W(dz),

where a € R, o0 > 0, 1 is the indicator function and the Lévy
measure W must satisfy

: 2
R /0 min{l,z<}W(dx) < oo. (1)



Which Lévy process? Why?

e Brownian motion; Bachelier.

e -Stable or Lévy Stable; Mandelbrot.

e Jump Diffusion; Merton.

e GIG and Generalised Hyperbolic Distribution; Barndorff-Nielsen.

e Variance Gamma; Madan et al.



e CGMY, Carr et al.

e KoBol, Tempered Stable; Koponen.

e FMLS:; Carr and Wu.

e Others.

When specifying a particular Lévy process we are basically asking
how do we want to specify the ‘behaviour’ of the jumps, in other

words how is the Lévy density w(x) (ie W (dx) = w(x)dz) chosen.
For example



Size and sign of jumps

Frequency of jumps

Existence of moments

Simplicity



The CGMY process

A simple answer is then to consider a Lévy density of the form

. (z) = Clz|~1-Ye=Gl2l for z < 0,
CGMY Cx—1-Ye—Mz for x > 0,

and the log of the characteristic function is given by
Voemy (0) = tCr(YV{(M — i) — MY + (G +i0)" —G¥}.
Here C >0, G>0, M >0 and Y < 2.



The Damped-Lévy process

wry () = Cqlz|~ 17 %e A2l for z < 0,
DL Cpr—l-ae—Az for x > 0,

and the natural logarithm of the characteristic equation is given
by

Vpr(0) = tk” {p(A —i0)* + g\ +i0)* — XY — ifaX* (g - p)} ,
forl<a<?2and p+q=1.



The Lévy-Stable process

Is a pure jump process with Lévy density
wro(z) = Cqlz|~17® for z <0,
L5 Cpx—1-@ for x > 0,
Hence the log of the characteristic function is W(0) =
—k¥0|* {1 —iB sign(8) tan(an/2)} for a # 1,
—/<;|0|{1—|—¥ sign(@)ln|0|} for a =1,

here C' > 0 is a scale constant, p >0 and ¢ > 0, with p+q¢g=1
and 8 = p — q is the skewness parameter.



Fractional Integrals

For an n-fold integral there is the well known formula

/aa: [-"/;f(w)dx _ (n_ll); /ax(flf—t)n_lf(t)dt.

Note that since (n — 1)! = IN'(n) the expression above may have
a meaning for non-integer values of n.

Definition 2 The Riemann-Liouville Fractional Integral. The
fractional integral of order o« > 0 of a function f(x) is given by

DOf(@) = —— [ (x— &) Li(e)de,
a () Ja

and

— _ 1 b a—1
Do f @) = s | €= e



Definition 3 The Riemann-Liouville Fractional Derivative.

D2 (@) = Foay g |, (@ = 7 L) de,
and
—1)n L
DEf(0) = m g g [, (€= 2" L€

T he Fourier Transform View

Note that if we let a = —oco and b = co we have

F{D f(x)} = (—i&)“f(£)
and

F{D2 f(x)} = (@) F(&).



The Lévy-Stable Fractional-Black-Scholes. Under the phys-

ical measure the price process follows a geometric LS process
d(InS) = pdt + odL g,

where L ~ Sq(dtl/® 3,0) with 1 <a<?2, —1<8<1 and ¢ > 0.

And under the risk-neutral measure (McCulloch) it follows

d(InS) = (r — Bo%sec(an/2))dt + dLjq + dLpy,
where dLjg and dLpj are independent.

rV = oV (z,t) + (r — Bo® SeC(om/Q))av(x’t)
ot ox

+r§ sec(an/2) (V(z,t) — "D~V (x,1))

— k5 sec(am/2)DS V (z,t)

where
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c% and k¥ =

KS =

1-8 4
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T wo cases: classical Black-Scholes and the fractional FMLS

Case o« = 2, Black-Scholes

oV (x,t)
ot

aV(J?, t) —|— 0_282‘/(33, t)

2
+(r—o%) ox o2

rV(z,t) =

Casea>1and = -1, FMLS

V(s t) = avéf’t) + (r 4+ 0 sec(an/2))

—o%sec(am/2)DLV (z,t).

oV (x,t)
ox
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Proposition 1 CGMY Fractional-Black-Scholes equation.

et the risk-neutral log-stock price dynamics follow a CGMY
process

d(|ﬂ S) = (’I“ —’w)dt—l-dLCGMy. (2)

The value of a European-style option with final payoff M(x,T)
satisfies the following fractional differential equation

oV (x,t) oV (z,1t)
ot +r—w) oz

+o (MY + GV (x,t)
+oeMzpY (e_MwV(x, t)>
_|_0€—Ga:D}|/_ (erV(w, t)) :

rV(z,t) =

where o = CI'(-Y).
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Proof

V(z,t) = e "I OE[N(zr, T)].

o—T(T—1) ot e
V(z,t) = E / e rER(E)de | -
27 —ootiv
Vi) = e_T(T_t)e_ig“(T_t)e(T_t)w(_Oﬁ(f)-
oV (&,t) . %
T = (7“ + zé’u — \U(—f))v(fat)

with boundary condition V(¢,T) = MN(¢,T).
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Dynamic Hedging: Delta hedging, Delta-Gamma hedging, Vari-
ance minimisation.

The Taylor Expansion View

1 2
dV = 8_th+3_vds+ oV

Z_dS% 4 ...,
ot oS 20952 T

Portfolio P(S, t) = Vl(S, t) — AS — bVQ(S, t)
8‘/1(5, t) B 8\/2(5, t)b
0S 0S ’

_ 0%V1(8,t)/0S?
— 92V»(S,t) /082

ANE—
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FMLS Daily Deltra hedge with a=1.5, S=K=100, T=1month
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Frequency
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FMLS Min Variance with a=1.5, S=K=100, T=1month
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Frequency

FMLS Delta and Gamma Hedging with a=1.5, S=K=100, T=1month
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FMLS Black-Scholes: the Taylor expansion view

8V(w,t)dt+ (9V($,t)0la3

ot . ox
e O AU CICOLESI

dV(z,t) =

(Samko et al 1993).

Therefore it seems natural, in the FMLS case, to delta and
fractional-gamma hedge the portfolio P(x,t) = Vi(x,t) — Ae® —
bVo(x,t), hence

L= oVi(x,t) 1 B oVo(x,t) 1 :

ox el oz el

and
e*DY V1 (z,t) — 0V7 (=x, t)/@acD?f_eg'j

ewD?‘l_VQ(:c, t) — OVo(ux, t)/@mD?f_ex'
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Frequency

FMLS Delta and Fractional Hedging with a=1.5, S=K=100, T=1month
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In General might want to do...

oV t oV t
(@8 | V@D | oy, (3)
ot ox

where G is an operator containing the fractional derivatives.

rV(x,t) =

P(x,t) = Vi(s,t;T1) — ae® — bVo(s,t;To) (4)
T herefore we require
oVi(z,t) 1 OVo(z,t) 1 :
a = —

oz el oz el

and
b — e?GVi(x,t) — oVi(x,t)/0xGe”
etGVo(x,t) — OVo(x,t)/0xGe”
so the portfolio is both Delta and Fractional-Gamma-neutral, ie
OP(xz,t)
Ox

=0 and GP(x,t)=0.
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CONCLUSIONS and FURTHER WORK

For Lévy processes with Lévy densities that have a polynomial
singularity at the origin and exponential decay at the tails we can
recast the pricing equation in terms of Fractional derivatives.

The non-local property of the fractional operators can be useful
when dynamically hedging options.

Using well established numerical schemes for Fractional opera-
tors it might be possible to price American options. Moreover,
for these processes we can derive Fractional Fokker-Planck equa-
tions that may also be used in the pricing of American options.
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