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CHRISTOPHER CROKE
University of Pennsylvania

The Boundary Rigidity Problem

This series of talks is an introduction to the boundary rigidity problem. A long term
goal would be to determine a Riemannian metric on a manifold with boundary from
the distances between its boundary points. This would have applications in areas from
medical imaging to seismology. Unfortunately, it is not always possible to do this. The
boundary rigidity problem is to determining when it is possible. We consider Riemannian
manifolds (M,B,g) with boundary B and metric g. We let d, the ”boundary distance
function”, be the real valued function on BxB giving the distance in M (i.e. the ”chordal
distance”) between boundary points. The question is whether there is a unique g for a
given d (up to an isometry which leaves the boundary fixed). We will talk about the
various conjectures, theorems and counter examples that have been developed over the
years.

VICTOR ISAKOV
Wichita State University

Carleman Estimates

We will discuss weighted L2-estimates of solutions of general partial differential equations
of second order. We introduce the so-called pseudo-convexity condition for the weight
function and give examples of such functions for elliptic and hyperbolic operators. Then
we formulate Carleman estimates with boundary terms, and give an elementary proof for
a particular case of the Helmholtz operator. This proof illustrates the general case and
gives new estimates with constants not depending on the wave number.

Uniqueness and Stability in the Cauchy problem

Here, following the classical Carleman idea, we apply Carleman estimates to derive unique-
ness results and stability estimates of the continuation of solutions to partial differential
equations. We give the counterexample of Fritz John which shows importance of pseudo-
convexity and outline recent progress in increased stability for the Helmholtz equation.

Applications to Inverse Problems and Optimal Control

By studying an ”adjoint” problem we show that uniqueness of the continuation implies
the so-called approximate controllability by solutions of PDE. For hyperbolic equations
we will derive from Carleman estimates a stronger property called an exact controllabil-
ity and its dual which is a Lipschitz stability estimate of the initial data by the lateral
boundary data. Finally we outline the method of Bukhgeim-Klibanov which under cer-
tain conditions transform Carleman estimates into uniqueness results for unknown source
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terms and coeffieints of hyperbolic PDE. In conclusion we discuss open problems and
further possibilities of Carleman estimates.

HIROSHI ISOZAKI
Tokyo Metropolitan University

Inverse Problems and Hyperbolic Manifolds

I am going to talk about recent results on inverse spectral problems related with hyperbolic
manifolds.
[1] Hyperbolic geometry and local DN map. Consider the equation of conductivity ∇ ·
(γ∇u) = 0 in a bounded domain Ω ⊂ R3. Let Λγ be the associated Dirichlet-Neumann
map, Λγ : u|∂Ω → γ∂u/∂n|∂Ω, n being the unit outer normal to ∂Ω. Take x0 from the
boundary of the convex hull of Ω, and let B(x0, R) = {y; |y − x0| < R}. If Λγ1

= Λγ2
on

∂Ω ∩ B(x0, R) for some R > 0, then one can show that γ1 = γ2 on Ω ∩ B(x0, R). This
means that the local knowledge of the DN map determines γ locally. This theorem has
important applications in practical problems and is proved by using isometries of Möbius
transformations in H3 (a joint work with G. Uhlmann).
[2] Equivalence of inverse boundary value problems in euclidean and hyperbolic spaces.
The inverse boundary value problem for the Schrödinger operator in Rn is equivalent
to that in Hn. Moreover the inverse boundary value problem and the inverse scattering
problem are equivalent in Hn. Using this fact, one can solve the inverse spectral problems
by utilizing spectral properties of Laplacians on hyperbolic spaces.
[3] Local conformal deformations of hyperbolic metric. Take a bounded contractible open
set in any hyperbolic manifolds. Then one can solve the associated inverse boundary
value problem. If the manifold is non-compact, one can introduce some spectral data at
infinity of this manifold to reconstruct the local conformal deformation of the hyperbolic
metric. As an example, we can deal with the inverse scattering at the cusp neighborhood
at infinity.

SLAVA KURYLEV
Loughborough University

Gel’fand Inverse Boundary Problem in Multidimensions

Gel’fand inverse boundary problem consists of determination of an unknown elliptic oper-
ator on a bounded domain/manifold from the restriction to the boundary of its resolvent
kernel. This kernel is assumed to be known, as a meromorphic operator-valued function,
for all values of the spectral parameter. In our lectures we concentrate on the case of a
Laplace operator on an unknown Riemannian manifold. Using the geometric version of
the Boundary Control method we show that the Gel’fand inverse boundary problem is
uniquely solvable and provide a procedure to recover the manifold and the metric. Using
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the theory of geometric convergence, we also study geometric conditions on an unknown
manifold to guarantee stability of this inverse problem.

ADRIAN NACHMAN
University of Toronto

Introduction to Inverse Problems

This talk will give a graduate level introduction to the inverse boundary value problem
of Calderon, its applications to medical and geophysical imaging, and its analysis using
exponentially growing solutions of an elliptic equation. Several open problems in the field
will also be presented. In the anisotropic case, the problem becomes one of recovering
a metric in a Riemannian manifold with boundary from the corresponding Dirichlet-to-
Neumann map for the Laplace-Beltrami operator. This leads to beautiful connections to
differential geometry which will be further brought out in several of the lectures in the
Symposium.

GUNTHER UHLMANN
University of Washington

The Dirichlet to Neumann Map and the Boundary Distance Function

We will consider in these introductory lectures the inverse boundary problem of Electrical
Impedance Tomography (EIT). This inverse method consists in determining the electrical
conductivity inside a body by making voltage and current measurements at the boundary.
The boundary information is encoded in the Dirichlet-to-Neumann (DN) map and the
inverse problem is to determine the coefficients of the conductivity equation (an elliptic
partial differential equation) knowing the DN map. We will also consider the anisotropic
case which can be formulated, in dimension three or larger, as the question of determining
a Riemannian metric from the associated DN map. We will discuss a connection of this
latter problem with the boundary rigidity problem which will be the topic of C. Croke’s
lectures. In this case the information is encoded in the boundary distance function which
measures the lengths of geodesics joining points in the boundary of a compact Riemannian
manifold with boundary.


