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Convexity

Let IV be a real-linear space. A set C' C V Is convex if
forall =,y € S the line segment
z,yl ={axr+ (1 —a)y:ael0,1]} is contained in S.

the convex hull conv(X) of a set X C V' is the
Intersection of all convex sets containing X, or,
equivalently, obtained from X by repeatedly adding all

[z, 9] in w steps. conv(X) = (J{conv(Y) : YV € [X]<N0}.

Caratheodory’s theorem: if d < co and X C R then
y € conv(X) iff there is some A € [X]=*1) so that
y € conv(A).

Aset X C S C Visdefectedin S if conv(X) Z S.
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Convex covers

Given S C V, let I(S) be the ideal generated over S by
all convex subsets of S. The covering number of this
ideal, Cov(I(S)) is the number of convex subsets of S
required to cover S, called also the convexity number
of S and sometimes written ~(.5).

v(S) is the chromatic number of the hypergraph (S, £)
where £ is the collection of finite defected subsets of S.

If v(5) < Ny we say that S is countably convex.

Quite a few set-theoretic problem result from studying
the structure of either countably or uncountably convex
sets in Banach spaces.
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Separating the countable from the
uncountable part

Work now in a second countable topological vector space
V.Givenaset S CV, let

A=J{SNu:wubasicopenand y(SNu) <Ny} Let
B =5\ A. So:

Y(A) < Vg
A'ls open; so B is closed.

B Is perfect.

Y(S) >Ny <= B+
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Effective convexity numbers

Depending on the dimension and on the descriptive

complexity of the set S, there are two effective ways to
compute the convexity number of S.

A subset P C S'is k-cligue (k > 2) if all k-subsets of P
are defected in S. A perfect k-cligue P C S Is an
effective evidence that (.5) = 2%,

On the other hand there is a rank function ps(x) which
measures the convex complexity of a point = € S, and

IN some cases provides countable convex covers
effectively (Kojman 2000).
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Part I: Countable convexity

The rank function: for every ordinal «,

ps(x) > a <= (Vopenu>z) (V8 < «a)

(3 defected Y C u) N\ ps(y) > 3

yey

A point has rank > « if it is a limit of defected

configurations of points of arbitrarily large rank below
Q.

There is an ordinal «(S) < w; so that for all x € S, if
ps(z) > a(S) then ps(z) = oo
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There is an effective way to cover {x € S : ps(z) < a}
by countably many convex sets: for every point of rank
5 < a, there is an open neighborhood in which the
convex hull of all points of the same rank is contained
In S.

Call K(S)={x € 5 :ps(x) = oo} the convexity radical
of S.

It can happen that K(S) # () but y(S) < Ny in an F, set.

Let S be the union of all vertical lines at rational
distance from the y-axis.

A closed subset S of a Polish vector space is countably
convex iff K(.S) = 0.
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Application: The unit spherein C'(K)

Let K’ be a compact metric space, and let C'(K') be the
Banach space of all continuous real functions on K, with
the sup norm. Let S(K) = {f € C(K) : ||f|| = 1} denote
the unit sphere in C'(K).

If K’ is uncountable, S(K) is not countably convex.

Theorem. If K, K, are compact metric spaces and
,O(S(Kl)) — ,O(S(KQ)) < oo then Kl = KQ.
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(-5 Sets

The following hold for G5 sets (Fonf-Kojman 2001):

in a finite dimensional G5 set S, the radical K(S) is
always nowhere-dense in S.

In dimension d < 3, a countably convex G, set cannot
contain a dense In itself clique.

In dimension d > 4 there Is a countably convex (5 set
with a dense In itself 2-clique.

In every infinite dimensional Banach space there is a
countably convex G5 set S which contains a 2-clique
which is dense in itself and in S.
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Let
L(t) = (t,¢%,¢°,t")

andlet L = {L(t):te[0,1]}

Let .S be the convex hull of L from which we remove, for
any two rational t1,t, € QN [0, 1], the mid-point

(L(t1) + L(t2))/2.

SisaGgsetand {L(t):te€ QnN(0,1)} is a dense in itself
2-clique. Why is S countably convex?

Fort,1, € [O, 1},

(x —t1)% (2 — t2)* = ag + a1 + asx? + asx® + agz”.

Let 7 : R* — R be defined by

T (v1,v2,03,04) = ag + Zle a;v;. Forallt € [0,1],

T(L(t)) = T(t,t*,t°,t*) = (t — t1)*(t — t3)* > 0. Thus,
L(ty), L(ty) are on a supporting hyperplane.



Suppose S = JC,isa Gssetand P C S is a dense in
itself 2-clique. Then one of the (), In somewhere dense In

the closure of P.
Get: a dense In itself subset on the boundary of a convex

subset, with any two points connected via the boundary.
Then there Is a plane which contains a dense in itself
subset of P. Why? Because in R’, any simplicial polytope
with 5 vertices or more contains an inner diagonal.
Similarly, for k-cligues with & > 2, use the fact: every
simplicial polytope in R? with 4% + 1 vertices or more has
an inner polytope with d + 1 vertices.
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Part Il: Uncountable convexity

If S C Visclosed, then K(5) =0 <= ~(5) <N,
because the the closure of a convex set IS conves:
therefore the intersection of a convex subset of S with

K (S) is nowhere dense.

What meager ideal are realized as convexity ideals In
which dimensions? Can we learn more about meager

ideals in general from those examples?
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Digression: Covering by Meager
Ideals

Let M (X) denote the meager ideal over a perfect
Polish space X, and let Cov(M /(X)) denote the
number of members M (X) necessary to cover X
(which is always uncountable by the Baire theorem).

A meager ideal is any ideal I C M (X)) for a perfect
Polish X.

Goldstern-Shelah: there is a model of set theory In

which N; different uncountable cardinals are realized
as the covering numbers of simply defined meager

Ideals. So the landscape Iis complicated.
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Largeness of M

Meager sets can be big in other senses:
R =AU B, A meager, B of Lebesgue measure O.

In Forcing terminology: adding a random real makes
the set of ground model reals meager.

Thus, after adding ¥; random reals, R is covered by N,
meager sets: It is consistent that |R| = N4, and
COV(M) — Nl
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Big and trivial meager ideals

The consistency of Cov(M) < 2% will be taken as a
definition that M Is a big meager ideal; similarly, any
meager [ is big if it is consistent that Cov (/) < 2%,

On the other hand, a meager ideal 7/ C M is called
trivial if ZFC + Cov(I) = 2%,

Example: the ideal of countable subsets of R is trivial.
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Another example

The ideal generated over R* by graphs of real-analytic
functions and their inverses.

/\\r\ any //
4 LS
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Meager ideals from convexity

For every closed uncountably convex S C ¢, the ideal
I[(S)on K(S) is meager.

Example. The ideal generated by 2-branching perfect
subtrees of 3“ is big and is isomorphic to the convexity

ideal of the following set:
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R"™ and the dimension conjecture

Theorem. (Geschke-Kojman 2002) for all n > 2 there are
closed sets 5. .55, .5,_1 € R" so that for every sequence of
cardinals x; > ko, > --- > k,,_{, €ach with uncountable
cofinality, it is consistent that v(.S;) = ;.

Conjecture. For every n, it iIs consistent that »n different
uncountable cardinals can be realized as convexity
numbers of closed subsets of R", but not more.
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RQ

(Geschke-Kojman-Kubis-Schipperus 200?) The dimension
conjecture holds in R?! For every close S C R?, either S
contains a perfect clique, or else ~(5) is equal to the
homogeneity number hm(c) of some continuous pair
coloring (geometric proof).

A closed S C R? contains a perfect 3-clique iff in the Sacks
extension its convexity number remains continuuum.

In fact, the nontrivial convexity ideals of closed sets in R”
are a new type of very small — yet nontrivial — meager
Ideals.

Is I(c.x) realizable as a convexity ideal of a closed set in

R%?
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More connections and more
problems

Is there a smallest nontrivial meager ideal?
IS I(cmax) the smallest nontrivial meager ideal?

A stronger regularity condition on functions could
perhaps produce a smaller meager ideal. But: analytic
IS too strong; differentiable is open!
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2o

|

hm(Cmax)

|

Cov(Lip(R)) > Cov(Lip(w®)) = Cov(Lip(2¥)) ——— hm(cmin)

T

Cov(Cont(R)) = Cov(Cont(w®)) = Cov(Cont(2%))

|
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