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Exercise 1. Assume S is a compact right-topological semigroup.
(1) If p is an idempotent in S then there is a minimal idempotent q ≤ p.
(2) Assume S1 is a closed subsemigroup of S such that I = S \ S1 is an ideal, and p is a minimal idempotent in S1.

Assume q is an idempotent in I. Then for every continuous homomorphism f : S → S1 such that f � S1 is an
identity we have f(q) = p.

(Note: An example for the objects as in the previous exercise is S =
⋃k

i=1 FINi, S1 =
⋃k−1

i=1 FINi, and I = FINk. And
the proof of (2) can be modified to show that T (q) = p, if T is the tetris operation. Hence this shows that the idempotents
pk in FINk can be chosen to be minimal, as I have originally stated.)

Exercise 2. Prove that for A ⊆ N the following are equivalent:
(1) For every partition of N into finitely many pieces there is an infinite subset B of A such that FS(B) is included in

a single piece.
(2) There is p ∈ β N such that p + p = p.

(Notation: FS(A) stands for all finite sums of distinct elements of A.)
An ultrafilter p on FINk is cofinite if for every m ∈ N the set {s ∈ FINk : supp(s) ∩m = ∅} belongs to p.

Exercise 3. Prove that the cofinite ultrafilters on FINk form a closed subsemigroup of β FINk.

Let Σ be a finite alphabet and let S be the semigroup of words over Σ. In other words, S is the free semigroup with Σ
as the set of generators. Let v be a variable which is not a member of Σ. A word over Σ∪{v} is a variable word if v occurs
in it. Let S(v) be the semigroup of all variable words. If x ∈ S(v) and a ∈ Σ, let x(a) be the word obtained by replacing
all occurrences of v in x by a.

Theorem 4 (Hales–Jewett). If S =
⋃k

i=1 Yi, then there is a variable word x and i ≤ k such that {x(a) : a ∈ Σ} ⊆ Yi.

Exercise 5. Prove Hales–Jewett theorem. 1

There is also an infinite version of Hales–Jewett theorem, that combines it with Hindman’s theorem for the free semigroup.

Theorem 6. If S =
⋃k

i=1 Yi, then there is a sequence of variable words A = 〈wi : i ∈ N〉 and j ≤ k such that the subspace
generated by A is included in Yj. The space generated by A is the family (wu is a concatenation of words w and u)

{wn1(a1)wn2(a2) . . . wnl
(al) : n1 < n2 < · · · < nl, ai ∈ Σ}.

If your solution to Exercise 5 looks as I believe it should, it should easily give Theorem 6 as well. One can strengthen
this theorem by considering a partition of S(v) as well, and moreover allow more than one variable. There is also a joint
generalization of Theorem 6 and Gowers’ theorem.

Theorem 7 (van der Waerden). If N =
⋃k

i=1 Yi, then there is i such that Yi contains an arbitrarily long arithmetic
progression.

Exercise 8. (1) Find a partition of N into two pieces such that neither of the pieces contains an infinite arithmetic
progression.

(2) Prove van der Waerden’s theorem.234
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1Hint: Use Exercise 1 and the machinery that we have developed in proving Hindman’s and Gowers’ theorems.
2Hint 1: Use Hales-Jewett theorem.
3Hint 2: To get an arithmetic progression of length 10, let Σ = {0, 1, . . . , 9}.
4Note: There is also a very nice direct proof using the machinery that we have developed. In a sense, proving van der Waeerden’s theorem

using Hales–Jewett’s theorem is shooting a fly with a cannon, but our main goal was Gowers’ theorem and the machinery developed to prove it

is more suitable for proving Hales–Jewett then for proving van der Waerden.


