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Exercise 1. Assume S is a compact right-topological semigroup.
(1) If p is an idempotent in S then there is a minimal idempotent q < p.
(2) Assume Sy is a closed subsemigroup of S such that I = S\ Sy is an ideal, and p is a minimal idempotent in Sy.
Assume q is an idempotent in I. Then for every continuous homomorphism f: S — Sy such that f | Sy is an
identity we have f(q) = p.

(Note: An example for the objects as in the previous exercise is S = Ule FIN’, S; = Ui:ll FIN?, and I = FIN*. And
the proof of (2) can be modified to show that T(q) = p, if T is the tetris operation. Hence this shows that the idempotents
pr in FIN® can be chosen to be minimal, as I have originally stated.)

Exercise 2. Prove that for A C N the following are equivalent:
(1) For every partition of N into finitely many pieces there is an infinite subset B of A such that FS(B) is included in
a single piece.
(2) There is p € BN such that p+p = p.

(Notation: FS(A) stands for all finite sums of distinct elements of A.)
An ultrafilter p on FINy is cofinite if for every m € N the set {s € FINy : supp(s) Nm = 0} belongs to p.

Exercise 3. Prove that the cofinite ultrafilters on FINy form a closed subsemigroup of 3 FIN.

Let ¥ be a finite alphabet and let S be the semigroup of words over ¥. In other words, S is the free semigroup with
as the set of generators. Let v be a variable which is not a member of ¥. A word over ¥ U {v} is a variable word if v occurs
in it. Let S(v) be the semigroup of all variable words. If z € S(v) and a € X, let 2(a) be the word obtained by replacing
all occurrences of v in x by a.

Theorem 4 (Hales—Jewett). If S = Ule Y;, then there is a variable word x and i < k such that {z(a) : a € £} CY;.

Exercise 5. Prove Hales—Jewett theorem. !

There is also an infinite version of Hales—Jewett theorem, that combines it with Hindman’s theorem for the free semigroup.

Theorem 6. If S = Ule Y;, then there is a sequence of variable words A = (w; : i € N) and j < k such that the subspace
generated by A is included in Y;. The space generated by A is the family (wu is a concatenation of words w and u)

{Wn, (@1)Wn, (az) ... wy, (a1) 101 <ng < -+ < ny,a; € B}

If your solution to Exercise 5 looks as I believe it should, it should easily give Theorem 6 as well. One can strengthen
this theorem by considering a partition of S(v) as well, and moreover allow more than one variable. There is also a joint
generalization of Theorem 6 and Gowers’ theorem.

Theorem 7 (van der Waerden). If N = UleYi, then there is © such that Y; contains an arbitrarily long arithmetic
Progression.

Exercise 8. (1) Find a partition of N into two pieces such that neither of the pieces contains an infinite arithmetic
PTOgression.

(2) Prove van der Waerden’s theorem.?3*
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IHint: Use Exercise 1 and the machinery that we have developed in proving Hindman’s and Gowers’ theorems.

2Hint 1: Use Hales-Jewett theorem.

3Hint 2: To get an arithmetic progression of length 10, let ¥ = {0,1,...,9}.

4Note: There is also a very nice direct proof using the machinery that we have developed. In a sense, proving van der Waeerden’s theorem
using Hales—Jewett’s theorem is shooting a fly with a cannon, but our main goal was Gowers’ theorem and the machinery developed to prove it
is more suitable for proving Hales—Jewett then for proving van der Waerden.



