2. Partition Theory and Banach Spaces

We shall start with a sketch of another proof of the theorem proved last time.

2.1 Theorem. (Erdös-Rado) If $f: [\mathbb{N}]^d \to Y$, then there exists $A \in [\mathbb{N}]^\omega$ such that $f[A]^d$ is canonical.

Proof. By induction on d. Case d=1 is trivial. Assume the statement is true for d. Fix $f: [\mathbb{N}]^{d+1} \to Y$. For $s=\{a_1,\ldots,a_{2d+2}\}_{<} \in [\mathbb{N}]^{2d+2}$ define an equivalence relation on $[\{1,\ldots,2d+2\}]^d$ by $u \sim v$ iff $f(\{a_i|i\in u\})=f(\{a_i|i\in v\})$. Define function $g: [\mathbb{N}]^{2d+2} \to \mathcal{E}$ ($\mathcal{E}=$ all equivalence relations on $[2d+2]^d$). Apply Ramsey Theorem to get $A\in [\mathbb{N}]^\omega$, which is g-homogeneous; If $f[[A]^{2d+2}$ is one-to-one, then we are done (X=d+1). Otherwise, there are $s,t\in [A]^d$, $s\neq t$, such that f(s)=f(t). Let j< d+1 be the first place at which s and t disagree. Prove that f(u) does not depend on the j-th coordinate of u and apply the induction hypothesis.

2.2 Lemma. If $d \in \mathbb{N}$, $f: [\mathbb{N}]^d \to \mathbb{R}$, and the range of f is bounded, then there is an infinite subset $A \in [\mathbb{N}]^{\omega}$ such that $\lim_{\min s \to \infty, s \in [A]^d} f(s)$ exists.

Proof. By induction. Case d=1 is the same as the last proof. Fix $f: [\mathbb{N}]^{d+1} \to \mathbb{R}$. For $m \in \mathbb{N}$ define $g_m: [\mathbb{N}/m]^d \to \mathbb{R}$, by $g_m(s) = f(\{m\} \cup s)$. By the induction hypothesis $\mathcal{F}_m = \{B \in [\mathbb{N}]^\omega | \lim_{\min s \to \infty, s \in [B]^d} g_m(s) = r_m \text{ for some } r_m \in \mathbb{R}\}$ is dense. Let C be such that $C/m \in \mathcal{F}_m$ for every $m \in C$. Find $A \in [C]^\omega$ such that $\lim_{m \in A, m \to \infty} r_m = r$ for some r (case d=1). Then A has the required properties.

The basic sequences (w_i) and (v_i) are k-equivalent if $\forall (a_i)$

$$1/k|||\Sigma_{i=1}^{\infty}a_{i}w_{i}||| \leq |||\Sigma_{i=1}^{\infty}a_{i}v_{i}||| \leq k|||\Sigma_{i=1}^{\infty}a_{i}w_{i}|||$$

- **2.3 Definition.** A basic sequence $\{u_n\}$ is k-spreading $(k \in [1, \infty))$ if $\forall A \subset [\mathbb{N}]^{\omega}$ $\{u_n\}_{n=1}^{\infty}$ is k-equivalent to $\{u_n\}_{n\in A}$. 1-spreading is the same as spreading
- **2.4 Lemma.** The usual basic sequence in c_0 , $l_p(p=1)$ is 1-spreading.
- **2.5 Remark.** If $\{u_i\}_{i=1}^{\infty}$ is equivalent (is k-equivalent for some k) to $\{u_{2i}\}_{i=1}^{\infty}$ and $\{u_{2i+1}\}_{i=1}^{\infty}$, then $X \cong X^2$.
- **2.6 Definition.** A basic sequence $\{u_n\}_{n=1}^{\infty}$ in X is asymptotically spreading if there is a 1-spreading basic sequence $\{v_n\}_{n=1}^{\infty}$ in some Banach space Y such that $\forall k \forall \varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $\{u_{n_1}, u_{n_2}, \ldots, u_{n_k}\}$ is $(1+\varepsilon)$ -equivalent to $\{v_i\}_{i=1}^k$ whenever $N < n_1 < n_2 < \ldots < n_k$. Then $\{v_i\}_{i=1}^{\infty}$ is called a spreading model for $\{u_i\}_{i=1}^{\infty}$.
- **2.7 Lemma.** Some basic sequence in l_1 is spreading model for a basic sequence in Tsirelson's space.
- **2.8 Theorem.** (Brunel-Sucheston)(a) If $\{u_n\}_{n=1}^{\infty}$ is a normalized basic sequence, then it has a subsequence that is asymptotically spreading.

Proof. For every $k \in \mathbb{N}$ let D_k be a finite subset of $[0,1]^k$ that is 1/k-dense in l_1 -metric:

$$\forall (a_1, a_2, \dots, a_k) \in [0, 1]^k \exists (b_1, \dots, b_k) \in D_k \text{ such that } \Sigma_{i=1}^k |a_i - b_i| < 1/k$$
.

Fix $k, p \in D_k, p = (p_1, ..., p_k)$. Define $f_p: [\mathbb{IN}]^k \to \mathbb{IR}$ by $f_p(s) = \|\Sigma_{i=1}^k p_i u_{s(i)}\|$ (where $s = \{s(1), s(2), ..., s(k)\}_{<}$).

Note: $|f_p(s)| \le \sum_{i=1}^k |p_i|$.

Let $\mathcal{F}_k = \{A \in [\mathbb{N}]^\omega | (\forall p \in D_k) \lim_{\min s \to \infty, s \in [A]^k} f_p(s) = r_p \text{ exists} \}$. Note that \mathcal{F}_k is dense by Lemma 2.2. So, by diagonalization pick $A \in [\mathbb{N}]^\omega$ such that $A/k \in \mathcal{F}_k$ for all $k \in A$. Actually consider $\mathcal{F}'_k \subset \mathcal{F}_k$, $\mathcal{F}'_k = \{A \in [\mathbb{N}]^\omega | \lim_{\min s \to \infty, s \in [A]^k} f_p(s) = r_p, \ \forall s \in [A/k] \ |f_p(s) - r_p| < 1/k \ \}$ and pick A such that $A/k \in \mathcal{F}'_k$. Consider $c_{00} = \{\sum_{i=1}^\infty a_i e_i | (\forall^\infty i) a_i = 0\}$ and note that for $v \in c_{00}$, $v = \sum_{i=1}^k a_i e_i$. Define $|||\sum_{i=1}^k a_i e_i||| = r_p$, if $p = (a_1, \ldots, a_k)$. Note that $|||c \cdot \vec{x}||| = c|||\vec{x}|||$ for all \vec{x} and rational scalars such that $|||c \cdot \vec{x}|||$ and ||||vecx||| are defined. Extend $||| \cdot |||$ to all of c_{00} by $|||\vec{x}||| = 1/c|||c\vec{x}|||$ for $c \in (0, \infty)$ such that $||c\vec{x}||_{l_\infty} < 1$. By the above this is well-defined. Then $\{e_i\}_{i=1}^\infty$ is 1-spreading.

$$|||\Sigma_{i=1}^k a_i e_i||| = |||\Sigma_{i=1}^k a_i e_{n_i}|||,$$

if $n_1 < n_2 < \ldots < n_k$ and this is a spreading model for $\{u_n\}_{n \in A}$.

2.9 Definition. A basic sequence $\{u_i\}_{i=1}^{\infty}$ is unconditional if

$$\forall i_0 \ \|\Sigma_{i=1}^k a_i u_i\| \ge \|\Sigma_{i=1, i \ne i_0} a_i u_i\|.$$

2.10 Theorem. (Brunel-Sucheston)(b) In Theorem 2.9 if $\{u_n\}_{n=1}^{\infty}$ is weakly null, then the corresponding spreading model can be taken to be unconditional.

Proof. We have $\{u_n\}_{n=1}^{\infty}$, $\{e_n\}_{n=1}^{\infty}$ spreading model and

* $\forall \varepsilon > 0, \forall k \in \mathbb{N} \ \exists N = N_{(k,\varepsilon)} \in \mathbb{N} \ \text{such that} \ \{u_{n_i}\}_{i=1}^k \ \text{is} \ (1+\varepsilon) \ \text{equivalent to} \ \{e_i\}_{i=1}^k \ \text{if} \ N < n_1 < n_2 < \ldots < n_k.$

Since $\{u_i\}_{i=1}^{\infty}$ is weakly null, by a theorem of Mazur we can find convex combinations $\{z_m\}_{m=1}^{\infty}$ of $\{u_i\}_{i=1}^{\infty}$ that converge to 0 in norm. So there are $p_1 < p_2 < \ldots$ and $\gamma_i \geq 0$ such that:

$$z_i = \sum_{j=p_i}^{p_{i+1}-1} \gamma_j u_j$$
, $\sum_{j=p_i}^{p_{i+1}-1} \gamma_j = 1$ and $\lim_{i \to \infty} ||z_i|| = 0$.

Fix $\sum_{i=1}^k a_i e_i$ and $1 \leq i_0 \leq k$. Pick $\delta > 0$, $\varepsilon << \delta$. Find k such that $k \geq 1/\varepsilon$, and $N(k,\varepsilon) = N$ such that * - holds. Find m so that $N + i_0 < p_m$ and $||z_m|| < \varepsilon$. For $j \in [p_m, p_{m+1} - 1]$ define

$$w_j = \sum_{i=1}^{i_0-1} a_i u_{N+i} + a_{i_0} u_j + \sum_{i=i_0+1}^k a_i u_{p_{m+1}+i} .$$

Let $x = \sum_{i=1}^{i_0-1} a_i u_{N+i}$, $y = \sum_{i=i_0+1}^k a_i u_{p_{m+1}+i}$. Then $w_i = x + a_{i_0} u_j + y$, so

$$\sum_{j=p_m}^{p_{m+1}-1} \gamma_j w_j = x + a_{i_0} \sum_{j=p_m}^{p_{m+1}-1} \gamma_j u_j + y .$$

Since $z_m = \sum_{j=p_m}^{p_{m+1}-1} \gamma_j u_j$ we have

$$\|\Sigma_{j=p_m}^{p_{m+1}-1}\gamma_j w_j\| \ge \left| \|x+y\| - a_{i_o}\|z_m\| \right| \ge \|x+y\| - a_{i_0}\varepsilon.$$

Also

$$|||w_j|| - |||\sum_{i=1}^k a_i e_i||| | < \varepsilon ,$$

using the fact that $\{e_i\}$ is a spreading model. But

$$\sum_{j=p_m}^{p_{m+1}-1} \gamma_j ||u_j|| \ge ||\sum_{j=p_m}^{p_{m+1}-1} \gamma_j w_j||$$

and so

$$||x+y|| - |a_{i_0}|\varepsilon \le \sum_{j=p_m}^{p_{m+1}-1} \gamma_j(||\sum_{i=1}^k a_i e_i|| + \varepsilon) = ||\sum_{i=1}^k a_i e_i|| + \varepsilon.$$

Choose
$$\delta = \varepsilon (1 + a_{i_0})$$
.

A result of Casazza, Johnson and Tzafriri implies the following:

- **2.11 Lemma.** If $\{e_i\}$ is the standard basis for Tsirelson's space, then $\{e_i\}_{i\in\omega}$ and $\{e_{2i}\}_{i\in\omega}$ are equivalent.
- **2.12 Theorem.** (Bellenot) If $\{e_i\}$ is the standard basis for Tsirelson's space $\{e_i\} \sim \{e_{f(i)}\}$ if and only if there is a primitive recursive function $g \geq f$.