Optimizing the matrix computationsin
environmental models

1. Types of the matrix computations that appear in
environmental models

2. Matrix computations related to the pseudo-spectral
method

3. Matrix computations related to finite elements and finite
differences

4. Matrix computations related to the chemical sub-model
5. Dense matrix computations

6. | mplementation of a special sparse matrix technique
7. Numerical results

8. Conclusions and open problems




Types of matrix computations

Using FFTsin the computations
Computations with different banded matrices
Computations with general sparse matrices
Computations with dense matrices

1. A large part of the computationsisrelated to matrices

2. Theimplementation of efficient techniquesfor
optimizing the matrix computationsis crucial




Matrix computationsrelated to
the pseudo-spectral method

1. FFTs- reduction of the number of
computationsfrom N?® to Nlog(N)

2. Development for different algorithmsfor
different computers

3. Swarztrauber s algorithm

4. Using multiple FFTs (Temperton'salgorithm)

5.NAG FFTs

6. Difficulties (sometimes transposed matrices
haveto beformed and used, speaal order is
very often nealed)




Matrix computationsrelated to finite
elements and finite differ ences

Banded matrices, sometimes symmetric and positive
definite,

Typical operations: matrix-vector multiplications,
factorizations, back substitutions and inner products

Standard libraries used: LAPACK, NAG Library,

Exploiting the symmetry: leads to reduction of the storage
regquirements, but degrades the speed of the computations

Recursive algorithms (Andersen, Wasniewski and
Gustavson, 2001)




Matrix computationsrelated to
the chemical sub-mode

QSSA - practically no matrix computations ar e used
with this method

Classical ODE methods: calculation of the Jacobian
matrix, formation of the shifted Jacobian matrix,

factorization, back substitution

Partitioned methods: the same operations as above, but
only for the diagonal blocks (the strong blocks)

Using conjugate gradient type methods (matrix-vector
multiplication and inner products). Preconditioning
might be needed




Dense matrix computations

Direct use of sparse matrix packages for general matrices
(Duff, Erisman and Reid, 1986, Zlatev, 1991) is not
efficient because the matrices are small and the number of
non-zero elementsisrelatively high).

The use of dense matrix techniques is more efficient than

exploiting the sparsity by applying general -purpose sparse
matrix software

Used packages. LAPACK, BLAS, NAG Library
Recursive algorithms can again be applied

General properties of the dense matrix computations: (i)
high performance can be achieved (regular structure), but
(11) the number of computations is high




Special sparse matrix techniques

Why is a special sparse matrix technique needed?
Disadvantages of the general sparse matrix technigues
|mplicit addressing
Treatment of fill-ins

Copiesof rows and columnsto the end of the ordered
lists

Gar bage collections

Finding a pivotal element

Many short loops areto be carried out

Use of many integer arrays




Removing the disadvantages

No pivoting for numerical stability: allowsusto
perform apreliminary reordering (Markowitz type of
strategy for reducing the number of fill-ins)

The positions of all fill-ins are determined and
locations for thefill-insarereserved

A loop-free code for the calculation of the LU
factorization is developed

A loop-free code for the calculation of the back-
substitution is developed




Thepricethat hasto be paid

The pivoting for numerical stability is sacrificed
L oop-free codestend to belong

Willoughby (1970) |BM Center (Yorktown Heights)
Sandu et al. (1999) |owa University
Swart and Blom (1996) CWI (Amsterdam)




Numerical results

M ethod Computing time
QSSA-1 12.85
QSSA-2 11.72

Euler 15.11
Trapez. 15.94
RK-2 28.49
Part. dense 10.09 Based on Euler




Conclusions and open problems

Theresults can be improved by choosing the
right way to handle the matrix computations

Some new techniques (such asrecursive

computations) have not been tried yet

| ter ative methods with preconditioning might
Improve the performance (the problem of
finding an optimal preconditioner is open)




