Computer treatment of the horizontal advection in air pollution models

- 1. The horizontal advection problem
- 2. Spatial discretization
- 3. Predictor-corrector (PC) schemes
- 4. VSVFMs
- 5. Absolute stability
- 6. Choice of particular PC schemes
- 7. Unresolved problems

1. Horizontal advection

$$\frac{\partial c}{\partial t} = -\frac{\partial (u c)}{\partial x} - \frac{\partial (v c)}{\partial y}$$

$$c = c(x, y, t)$$

$$u = u(x, y, t), \qquad v = v(x, y, t)$$

c - concentration (unknown function)u and v - wind velocities (known functions)

2. Numerical treatment

- Parallel tasks (shared memory)
 The calculations for a given compound
- Numerical methods

Pseudo-spectral discretization (Zlatev, 1984)

Finite elements (Pepper et al., 1979)

Finite differences (up-wind)

"Positive" methods (Bott, 1989; Holm, 1994)

Semi-Lagrangian algorithms (Neta, 1995)

Wavelets (not tried yet)

3. Pseudo-spectral (PS) method

$$f(x) \in \Re, \quad x \in [0,2\pi], \quad f(x+2\pi) = f(x)$$

$$X_{N} = \left\{ x_{n} / x_{n} = \frac{2 n \pi}{2 N + 1}, n = 0 \text{ (1)} 2 N \right\}$$

$$F_{N} = \left\{ f\left(x_{0}\right) \mid f\left(x_{1}\right) \dots, f\left(x_{2N}\right) \right\}$$

$$G_{N} = \left\{ \frac{d f\left(x_{0}\right)}{dx}, \frac{d f\left(x_{1}\right)}{dx}, \dots, \frac{d f\left(x_{2N}\right)}{dx} \right\}$$

3a. PS method - continuation

$$T_N(x) = A + \sum_{k=1}^{N} \left[a_k \cos(kx) + b_k \sin(kx) \right]$$

$$A = \frac{1}{2N+1} \sum_{m=0}^{2N} f(x_m)$$

$$a_k = \frac{1}{2N+1} \sum_{m=0}^{2N} f(x_m) \cos(kx_m)$$

$$b_k = \frac{1}{2N+1} \sum_{m=0}^{2N} f(x_m) \sin(kx_m)$$

Truncated Fourier series

Fourier coefficients

Use the derivative of the interpolation polynomial to get approximations of the derivatives of function f

3b. PS method - convergence

If f(x) is continuous and <u>periodic</u> and if f'(x) is piece-wise continuous, then the Fourier series of f(x) converges uniformly and absolutely to f(x).

Davis (1963)

3c. PS method - accuracy

It can be proved (Davis, 1963) that

$$\left|a_k\right| \le \frac{M}{k^{\mu+1}}$$
 and $\left|b_k\right| \le \frac{M}{k^{\mu+1}}$, M is a constant,

if

$$f^{(v)}(0) = f^{(v)}(2\pi), \ v = 0, 1, ..., \mu$$

3d. PS method - drawbacks

Drawback	Removing	Reference
Equidistant		
grids	?	
Periodicity for		Lyness,
convergence	Yes	1974
Periodicity for		Roache,
accuracy	Yes	1971, 1978

4. Finite elements

The application of finite elements in the advection module leads to an ODE

system:

$$P \frac{dg}{dt} = Hg$$

P is a constant matrix, H depends on the wind Choice of method

$$P^{-1}$$
, $(P-\Delta t\beta H)^{-1}$

5. Predictor-corrector schemes

$$\frac{dg}{dt} = f, \qquad f, g \in \Re^N, \qquad f = P^{-1}Hg$$

$$g_{k}^{[0]} = \sum_{i=1}^{\mu_{j}^{[0]}} \alpha_{ji}^{[0]} g_{k-i} + \Delta t \sum_{i=1}^{\nu_{j}^{[0]}} \beta_{ji}^{[0]} f_{k-i}$$

$$g_{k}^{[r]} = \sum_{i=1}^{\mu_{j}^{[r]}} \alpha_{ji}^{[r]} g_{k-i} + \Delta t \beta_{j0}^{[r]} f_{k}^{[r-1]}$$

$$+ \Delta t \sum_{i=1}^{\nu_{j}^{[r]}} \beta_{ji}^{[r]} f_{k-i}, \qquad r = 1, 2, ..., q_{j}$$

$$F = \{F_1, F_2, ..., F_j, ..., F_m\}$$

6. Variation of the stepsize

$$G_{K}^{*} = \{t_{k} \mid t_{0} = a, \Delta t_{k} = t_{k} - t_{k-1} > 0, k = 1(1)K, t_{K} = b\}$$

$$\Delta t_{kj}^{*} = \left\{\frac{\Delta t_{k-1}}{\Delta t_{k}}, \frac{\Delta t_{k-2}}{\Delta t_{k}}, ..., \frac{\Delta t_{k-s_{j}+1}}{\Delta t_{k}}\right\}$$

$$s_{j} = \max(\mu_{j}^{[0]}, v_{j}^{[0]}, \mu_{j}^{[1]}, v_{j}^{[1]}, ..., \mu_{j}^{q_{j}}, v_{j}^{q_{j}})$$

$$\Delta t_{kj}^*$$
 is associated with F_j

7. VSVFMs

$$g_{k}^{[0]} = \sum_{i=1}^{\mu_{j}^{[0]}} \alpha_{ji}^{[0]} (\Delta t_{kj}^{*}) g_{k-i} + \sum_{i=1}^{\nu_{j}^{[0]}} \Delta t_{k-i} \beta_{ji}^{[0]} (\Delta t_{kj}^{*}) f_{k-i}$$

$$g_{k}^{[r]} = \sum_{i=1}^{\mu_{j}^{[r]}} \alpha_{ji}^{[r]} (\Delta t_{kj}^{*}) g_{k-i} + \Delta t_{k} \beta_{j0}^{[r]} (\Delta t_{kj}^{*}) f_{k}^{[r-1]}$$

$$+ \sum_{i=1}^{\nu_{j}^{[r]}} \Delta t_{k-i} \beta_{ji}^{[r]} (\Delta t_{kj}^{*}) f_{k-i}$$

Constant stepsizes

Advantages and disadvantages

8. Convergence - 1

$$\Delta t = \max_{1 < k < K} (\Delta t_k), \quad \Delta t K \le \tau < \infty \quad for \quad \forall K$$

$$K \to \infty \quad \Rightarrow \quad \forall \Delta t_k \to 0$$

$$0 < \overline{\alpha} \le \frac{\Delta t_k}{\Delta t_{k-1}} \le \overline{\beta} \le \infty \quad for \quad \forall k$$

$$\alpha_{j1}^{[r]}(\Delta_{kj}^*) = \alpha_{j1}^{[r]} = \alpha_{j}^{[r]}, \quad \alpha_{j2}^{[r]}(\Delta_{kj}^*) = \alpha_{j2}^{[r]} = 1 - \alpha_{j}^{[r]},$$

$$\alpha_{js}^{[r]}(\Delta_{kj}^*) = \alpha_{js}^{[r]} = 0, \quad s = 3(1)\mu_j, \quad r = 0(1)q_j, \quad \forall k, \quad \forall j.$$

$$s_{i} \leq k \quad for \quad \forall k$$

 $s_i \le k$ for $\forall k$ selfstarting VSVFM

8a. Convergence - 2

Theorem 1

If a selfstarting VSVFM that is based on twoordinate PC schemes corresponding to twoordinate basic PC schemes is applied on a grid which determines a stable stepsize selection strategy, then the VSVFM is consistent, zerostable and convergent when

$$0 \le \alpha_j^{[q_j]} < 2 \quad for \quad \forall j$$

9. Absolute stability

Theorem 2

The length h_{imag} of the absolute stability interval on the positive part of the imaginary axis cannot exceed $q_j + 1$ when a basic PC scheme with q_j correctors is used

10. Restrictions on the stepsize

$$\frac{dg}{dt} = P^{-1} Hg$$

Assumptions: 1.

$$P^{-1}H = Q\Lambda Q^T$$

2.

 λ_{ii} imaginary for $\forall i$

3.

$$\lambda = \max(|\lambda_{ii}|)$$

Then:

$$\lambda \Delta t \leq h_{imag}$$

11. Preserving the stability

$$\frac{\partial c}{\partial t} = -u \frac{\partial c}{\partial x}, \qquad u \qquad \text{being a constant}$$

$$\lambda \approx \frac{1.73u}{\Delta x} \implies \frac{\lambda_1 u \Delta t}{\Delta x} < h_{imag} \quad (\lambda_1 \approx 1.73)$$

General 1-D case:

$$\Delta t < \alpha \frac{h_{imag}}{\lambda_1 U} \Delta x$$

General 2-D case:

$$\Delta t < \alpha \, \frac{h_{imag}}{\lambda_1(U+V)} \, \Delta x$$

12. Choice of good PC schemes

PC – scheme	Number	of form	ulae h _{imag}
${F}_1$		4	3.26
${F}_2$		3	2.51
${F}_3$		2	1.62

Avoiding reductions of the time-stepsize

Stability control

$$\Delta t < \alpha \, \frac{h_{imag}}{\lambda_1(U+V)} \, \Delta x$$

13. PLANS FOR FUTURE WORK

- Accuracy control
- Moving to fully VSVFM mode
- Object-oriented code
- Using 3-D refined resolution codes
- Selection of higher order methods
- Better coupling of the advection process with the other physical processes
- **Evaluation the splitting errors**